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Home automation platforms enable consumers to conveniently automate various physical aspects of their
homes. However, the security flaws in the platforms or integrated third-party products can have serious security
and safety implications for the user’s physical environment. This paper describes our systematic security
evaluation of two popular smart home platforms, Google’s Nest platform and Philips Hue, which implement
home automation “routines” (i.e., trigger-action programs involving apps and devices) via manipulation of
state variables in a centralized data store. Our semi-automated analysis examines, among other things, platform
access control enforcement, the rigor of non-system enforcement procedures, and the potential for misuse
of routines, and leads to eleven key findings with serious security implications. We combine several of the
vulnerabilities we find to demonstrate the first end-to-end instance of lateral privilege escalation in the
smart home, wherein we remotely disable the Nest Security Camera via a compromised light switch app.
Moreover, we provide a detailed account of our vulnerability-reporting experience and the current status of our
findings. Finally, we study impact of the continuous evolution of smart home platforms on the practicality of
security analysis, by evaluating the feasibility of the holistic analysis performed in this paper on six additional,
upcoming platforms. Our findings draw attention to the unique security challenges of smart home platforms,
and highlight the importance of enforcing security by design.
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1 INTRODUCTION
Internet-connected, embedded computing objects known as smart home products have become
extremely popular with consumers. The utility and practicality afforded by these devices has
spurred tremendous market interest, with over 20 billion smart home products projected to be in
use by 2020 [13]. The diversity of these products is staggering, ranging from small physical devices
with embedded computers such as smart locks and light bulbs, to full fledged appliances such as
refrigerators and HVAC systems. In the modern computing landscape, smart home devices are
unique as they provide an often imperceptible bridge between the digital and physical worlds by
connecting physical objects to digital services via the Internet, allowing the user to conveniently
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automate their home. However, because many of these products are tied to the user’s security or
privacy (e.g., door locks, cameras), it is important to understand the attack surface of such devices
and platforms, in order to build practical defenses without sacrificing utility.
As the market for smart home devices has continued to mature, a new software paradigm has

emerged to enable home automation via the interactions between smart home devices and the apps
that control them. These interactions may be expressed as routines, which are sequences of app and
device actions that are executed upon one or more triggers, i.e., an instance of the trigger-action
paradigm in the smart home. Routines are the building block of home automation [8, 39, 49, 50],
and hence, it is natural to leverage routines to characterize existing platforms.

If we categorize available platforms based on how routines are facilitated, we observe two broad
categories: (1) API-based Smart Home Managers such as Yeti [56], Yonomi [57], IFTTT [21], and
Stringify [47] that allow users to chain together a diverse set of devices using APIs exposed by device
vendors, and (2) platforms such as Google’s Works with Nest [30], Samsung SmartThings [44],
and Philips Hue [37] that leverage centralized data stores to monitor and maintain the states of
IoT devices. We term these platforms as Data Store-Based (DSB) Smart Home Platforms. In DSB
platforms, complex routines are executed via reads/writes to state variables in a central data store.
This paper is motivated by a key observation that while routines are supported via centralized

data stores in all DSB platforms, there are differences in the manner in which routines are created,
observed, and managed by the user. That is, SmartThings encourages users to take full control
of creating and managing routines involving third-party apps and devices via the SmartThings
app. On the other hand, in Nest, users do not have a centralized perspective of routines at all, and
instead, manage routines using third-party apps/devices. This key difference may imply unique
security challenges for Nest. Similarly, being a much simpler platform within this category of DSB
platforms, Hue represents another unique and interesting instance of the DSB platform paradigm.
Contributions: This paper performs a systematic security analysis of some of the less studied,
but widely popular, data store-based smart home platforms, i.e., Nest and Hue. In particular, we
evaluate (1) the access control enforcement in the platforms themselves, (2) the robustness of other
non-system enforcement (e.g., product reviews in Nest), (3) the use, and more importantly, the
misuse of routines via manipulation of the data store by low-integrity devices,1 and finally, (4) the
security of applications that integrate into these platforms.
To our knowledge, this paper is the first to analyze this relatively new class of smart home

platforms, in particular the Nest and Hue platforms, and to provide a holistic analysis of routines,
their use, and potential for their misuse in DSB platforms. Moreover, this paper is the first to analyze
the accuracy of app-defined permission descriptions and prompts, which provide highly critical
context to the user. Furthermore, we provide a detailed account of our vulnerability disclosure
experience with four separate vendors, and discover that certain vulnerabilities may not always be
fixable. Finally, we study the ramifications of platform evolution on the transparency and artifacts
required for security analysis. In doing so we not only discover concrete problems in DSB platforms,
but also use empirical analysis to reveal challenges for feasibly performing similar research studies
in the near future. Our novel findings (F1→F11) are summarized as follows:
• Misuse of routines – The permission model in Nest is fine-grained and enforced according
to specifications (F1), giving low-integrity third-party apps/devices (e.g., a switch) little room
for directly modifying the data store variables of high-integrity devices (e.g., security cameras).
However, routines supported by Nest allow low-integrity devices/apps to indirectly modify the
state of high-integrity devices, by modifying the shared variables they rely on (F4).

1In the context of our study, we define a device as high-integrity if it is advertised as security-critical by the device vendor
(e.g., Nest Cam) while those that are not security-critical are referred to as low-integrity (e.g., Philips Hue lamp).

ACM Transactions on Cyber-Physical Systems, Vol. - Special Issue on Security and Privacy for Internet of Things Systems,
No. #, Article ###. Publication date: July 2019.



• Lack of systematic defenses – Nest does not employ transitive access control enforcement
to prevent indirect modification of security-sensitive data store variables; instead, it relies on a
product review of application artifacts before allowing API access. We discover that the product
review process is insufficient and may not prevent malicious exploitation of routines; i.e., the
review mandates that apps prompt the user before modifying certain variables, but does not
validate what the prompt contains, allowing apps to deceive users into providing consent (F5).
Moreover, permission descriptions provided by apps during authorization are also often incorrect
or misleading (F6, F9), which demonstrates that malicious apps may easily find ways to gain
more privilege than necessary (F7), circumventing both users and the Nest product review (F8).

• Lateral privilege escalation – We find that smart home apps, particularly those that connect to
Nest and have permissions to access security-sensitive data store variables, have a significantly
high rate of SSL vulnerabilities (F10). We combine these SSL flaws with the findings discussed
previously (specifically F4→F9) and demonstrate a novel form of a lateral privilege escalation
attack. That is, we compromise a low-integrity app that has access to the user’s Nest smart home
(e.g., a TP Link Kasa switch), use the compromised app to change the state of the data store
to trigger a security-sensitive routine, and indirectly change the state of a high-integrity Nest
device (e.g., the Nest security camera). This attack can be used to deceive the Nest Cam into
determining that the user is home when they are actually away, effectively disabling it.

• Lack of bare minimum protections – Unlike Nest, the access control enforcement of Hue
is woefully inadequate. Third-party apps that have been added to a user’s Hue platform may
arbitrarily add other apps without user consent, despite an existing policy that the user must
consent to by physically pressing a button (F2). Making matters worse, an app may remove other
apps integrated with the platform by exploiting unprotected data store variables in Hue (F3).
These vulnerabilities may allow an app with seemingly useful functionality (i.e., a Trojan [23]) to
install malicious add-ons without the user’s knowledge, and replace the user’s integrated apps
with malicious substitutes. While repeating our experiments on a version of Hue updated to
address these issues, we discover that Hue’s mitigation is only partially successful (F11).
The rest of the paper is structured as follows: Section 2 describes the key attributes of DSB

platforms. Section 3 provides an overview of our security evaluation, and Sections 4→6 describe
our individual analyses. Section 7 demonstrates an end-to-end attack, and Section 8 provides a
detailed account of the vendors’ response to our findings. Section 9 describes our empirical study of
the feasibility of our security analyses with 6 additional smart home platforms. Section 10 describes
the related work. Section 11 concludes with lessons learned.
2 HOME AUTOMATION VIA CENTRALIZED DATA STORES
This section describes the general characteristics of data store-based platforms, i.e., smart home
platforms that use a centralized data store to facilitate routines. We provide the background on two
such platforms, namely (1) Google’s “Works with Nest” [32] platform (henceforth called “Nest”)
and (2) the Philips Hue lighting system [36] (henceforth called “Hue”), which serve as the targets of
our security evaluation. The Android apps for both of the systems have over a million downloads
on Google Play [16, 17], indicating significant adoption, and far-reaching impact of our analysis.
2.1 General Characteristics
Figure 1 shows the general architecture of DSB platforms, consisting of 3 main components: apps,
devices, and the centralized data store, which generally communicate over the Internet. Additionally,
a physical hub that facilitates local communication via protocols such as Zigbee or Z-wave may be
present (e.g., the Hue Bridge). The apps may either be Web services hosted on the cloud, or mobile
apps communicating via Web services. At this juncture, we generalize apps as third-party software
interacting with the data store, and provide the platform-specific descriptions later.
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Fig. 1. The general architecture of platforms that leverage centralized data stores. Note that 𝐻 is the universe
of all home state variables, and 𝑉𝑑𝑒𝑣𝑖𝑐𝑒𝑖 is the universe of all state variables specific to device𝑖 .

The centralized data store facilitates communication among apps and devices via state variables.
The data store exposes two types of state variables: (1) Home state variables that reflect the general
state of the entire smart home (e.g., if the user is at home/away, the devices attached to the home,
the postal code), and (2) Device-specific state variables that reflect the attributes specific to particular
devices (e.g., if the Camera is streaming, the target temperature of the thermostat).

Apps and devices communicate by reading from or writing to the state variables in the data store.
This model allows expressive communication, from simple state updates to indirect trigger-action
routines. Consider this simple state update: the user may change the temperature of the thermostat
from an app, which in turn writes the change to the target temperature variable in the data store.
The thermostat device receives an update from the data store (i.e., reads the target temperature state
variable), and changes its target temperature accordingly. Further, as stated previously, expressive
routines may also be implemented using the data store. For instance, the thermostat may change to
its “economy” mode when the home’s state changes to away, i.e., the thermostat’s app may detect
that the user has left the smart home (e.g., using Geofencing), and write to the home state variable
away. The thermostat may then read this change, and switch to its economy mode.

A salient characteristic of DSB platforms is that they lean towards seamless home automation by
automatically interacting with devices and executing complex routines via the data store. However,
even among DSB platforms, our preliminary investigation led to the following key observations
that motivate a targeted analysis of the Nest and Hue platforms and their apps:
Key Observations: We observe that both Nest and SmartThings execute routines; however, there
is a key difference in how routines are managed. SmartThings allows users to create and manage
routines from the SmartThings app itself, thereby providing users with a general view of all the
routines executing in the home [45]. In contrast, Nest routines are generally implemented as
decentralized third-party integrations. Third-party products that facilitate routines provide the user
with the ability to view and manage them. As a result, the Nest platform does not provide the
user with a centralized view of the routines that are in place. Due to this lack of user control, Nest
smart homes may face unique security risks and challenges, which motivates this security analysis.
Similarly, we observe that the Philips Hue platform may be another interesting variant of DSB
platforms. That is, Hue integrates homogeneous devices related to lighting such as lamps and bulbs,
unlike Nest and SmartThings that integrate heterogeneous devices, and represents a drastically
simpler (and hence unique) variant of home automation platforms that use centralized data stores.
As a result, the analysis of Hue’s attack surface has potential to draw attention to other similar,
homogeneous platforms, which is especially important considering the fragmentation in the smart
home product ecosystem [6]. To our knowledge, this paper is the first to analyze this relatively
new class of smart home platforms, and specifically, Nest and Hue.

2.2 Nest Background
TheWorks with Nest platform integrates a heterogenous set of devices, including devices from Nest
(e.g., Nest thermostat, Nest Cam, Nest Protect) as well as from other brands (e.g.,Wemo and Kasa
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A] structures:
<structure1 ID>

away = “home”
eta_begin = “1970-01-01T00:00:00.000Z”
postal_code = “00000”
thermostats = [<thermostat1 ID>, …, thermostatn ID]  
cameras = [ <camera1 ID>, …, <cameran ID>]
…

B] devices:
thermostats:

has_fan = true
target_temperature_c = 27
ambient_temperature_c = 24
…

<thermostatn ID>
…

cameras:
<camera1 ID>

is_online = true
is_streaming = true
web_url = “https://home.nest.com/cameras/…”
…

<cameran ID>
…

… (other device types)

<thermostat1 ID>

Fig. 2. A simplified view of the centralized data store in Nest.

switches, Google Home, MyQ Chamberlain garage door opener) [32]. This section describes the
key characteristics of Nest, i.e., its data store, its access control model, and routines.
Data store composition: Figure 2 shows a simplified, conceptual view of the centralized data
store in Nest. Note that the figure shows a small fraction of the true data store, i.e., only enough to
facilitate understanding. Nest implements the data store as a JSON-format document divided into
two main top-level sections: structures and devices. A structure represents an entire smart home
environment such as a user’s home or office, and is defined by various state variables that are global
across the smart home (e.g., Away to indicate the presence or absence of the user in the structure
and the postal_code to indicate the home’s physical location). The devices are subdivided into device
types (e.g., thermostats, cameras, smoke detectors), and there can be many devices of a certain type,
as shown in Figure 2. Each device stores its state in variables that are relevant to its type; e.g., a
thermostat has state variables for humidity, and target_temperature_c, whereas a camera has the
variables is_online and is_streaming. Aside from these type-specific variables, devices also have
certain variables in common; e.g., the alphanumeric device ID, the structure ID of the structure in
which the device is installed, the device’s user-assigned name, and battery_health.
Access Control in Nest: Nest treats third-party apps, Web services, and devices that want to
integrate with a Nest-based smart home as “products”. Each Nest user account has a specific data
store assigned to it and any product that requests access to the user’s data store needs to be first
authorized by the user using OAuth 2.0. Nest defines read or read/write permissions for each of the
variables in the data store. Some variables, e.g., the list of all thermostats in the structure, are always
read-only. A product that wants to register with Nest must first declare the permissions that it needs
(e.g., thermostat read, thermostat read/write) in the Nest developer console. When connecting a
product to Nest, during the OAuth authorization phase, the user is shown the permissions requested
by the product. Once the user grants the permissions, a revocable access token is generated specific
to the product, the set of permissions requested, and the particular smart home to which the product
is connected. This token is used for subsequent interactions with the data store.
Accessing the Nest data store: Devices and applications that are connected to a particular smart
home (i.e., the user’s Nest account) can update data store variables to which they have access, and
also subscribe to the changes to the state of the data store. Nest uses the REST approach for these
update communications, as well as for apps/devices to modify the data store. The REST endpoints
can be accessed through HTTPS by any registered Nest products.
Routines in Nest: In Nest, the user cannot create or view routines in a centralized interface
(i.e., unlike SmartThings). Instead, apps may provide routines as opt-in features. For example, the
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Nest smoke alarm’s smoke_alarm_state variable has three possible values, “ok”, “warning”, and
“emergency”. When this variable is changed to “warning”, other smart home products (e.g., Somfy
Protect [55]) can be configured to trigger and warn the user.

2.3 Hue Background
Unlike Nest, which is a platform for heterogeneous devices, Philips Hue deals exclusively with
lighting devices such as lamps and bulbs. As a result, the centralized data store of Philips Hue
supports much simpler routines. Hue implements its data store as a JSON document with sections
related to (1) physical lighting devices, (2) semantic groups of these devices, and (3) global config
variables (such as whitelisted apps and the linkbutton). To connect a third-party management app to
a user’s existing Hue system, the app identifies a Hue bridge connected to the local network, and
requires the user to press a physical button on the bridge. Once this action is completed by the user,
the app receives a username token that is stored in the whitelisted section of the Hue data store.
Whitelisted apps can then read and modify data store variables as dictated by Hue’s access control
policy, which grants all authorized apps the same access regardless of their purported functionality.
Our online appendix provides additional details regarding the Hue platform [1].

3 ANALYSIS OVERVIEW
This paper analyzes the security of home automation platforms that rely on centralized data
stores (i.e., DSB platforms). Third-party apps are the security principals on such platforms, as they
are assigned specific permissions to interact with the integrated devices. That is, as described in
Section 2, DSB platforms consist of (1) third-party apps that interact with the smart home (i.e.,
centralized data store and devices) by acquiring (2) platform permissions, and execute a complex
set of such interactions as (3) trigger-action routines. Our analysis methodology takes these three
aspects into consideration, starting with platform permissions, as follows:
A. Analysis of Platform Permissions (Section 4): We analyze the enforcement of platform
permissions/access control to discover inconsistencies by automatically building permission maps.
B. Analysis of Routines (Section 5):While analyzing permission enforcement shows us what
individual devices can accomplish with a certain set of permissions, we perform an experimental
analysis with real devices to identify the interdependencies among devices and apps through
the shared data model, and the ramifications of such interdependencies on the user’s security.
Additionally, Nest does not enforce transitive access control to prevent dangerous side-effects of
routines, but instead employs a product review process as a defense mechanism. We analyze the
effectiveness of this review process using the permission prompts used by existing apps as evidence.
C. Analysis of Third-party Apps (Section 6): We analyze the permission descriptions presented
by mobile apps compatible with Nest to identify over-privileged apps, or apps whose permission
descriptions are inconsistent with the permission requested. We then analyze the apps for signs of
SSL misuse, which we will further leverage to indirectly exploit security critical devices.
We combine the findings from these three analyses to demonstrate an instance of a lateral

privilege escalation attack in a smart home (Section 7). That is, we demonstrate how an attacker
can compromise a low-integrity device/app integrated into a smart home (e.g., a light bulb), and
use routines to perform protected operations on a high-integrity product (e.g., a security camera).

4 EVALUATING PERMISSION ENFORCEMENT
The centralized data store described in Section 2 may contain variables whose secrecy or integrity
is crucial; e.g., unprotected write access to the web_url field of the camera may allow a malicious
app to launch a phishing attack, by replacing the URL in the field with an attacker-controlled one.
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To understand if appropriate barriers are in place to protect such sensitive variables, we perform
an analysis of the permission enforcement in Nest and Hue.

Our approach is to generate and analyze the permission map for each platform, i.e., the variables
that can be accessed with each permission, and inversely, the permissions needed to access each
variable of the data store. Note that while this information should ideally be available in the platform
documentation, prior analysis of similar systems has demonstrated that the documentation may
not always be complete or correct in this regard [10, 12].
4.1 Generating Permission Maps
We generate the permission map using automated testing as in prior work on Android [10]. We use
two separate approaches for Nest and Hue, owing to their disparate access control models.
Approach for Nest: We first created a simulated home environment using the Nest Home Simu-
lator [31], and linked our Nest user account to this simulated smart home. We then created our
test Android app, and connected our test app to the simulated home (i.e., our Nest user account) as
described in Section 2.2. Note that the simulated smart home is virtually identical to an end-user’s
setup, such that real devices may be added to it. Using the simulator allows us to investigate the
data store information of Nest devices (e.g., the Smoke/CO detector) that we may not have installed.
In order to generate a complete view of the data store, we granted our test app all of the 15

permissions in Nest (e.g.,Away read/write, Thermostat read), and read all accompanying information.
To build the permission map for Nest’s 15 permissions, we created 15 apps, such that each app
requested a single unique permission, and registered these apps to our developer account in the
Nest developer console. Note that we do not test the effect of permission combinations, as our goal
is to test the enforcement of individual permissions, and Nest’s simple authorization logic simply
provides an app with a union of the privileges of the individual permissions.

We then connected each of the 15 apps to our Nest user account using the procedure described
in Section 2.2. We programmed each app to attempt to read and write each variable of the data
store (i.e., the previously derived complete view). We recorded the outcome of each access, i.e., if it
was successful, or an access control denial. In the cases where we experienced non-security errors
writing to data store variables (e.g., writing data with an incorrect type), we revised our apps and
repeated the test. The outcome of this process was a permission map, i.e., the mapping of each
permission to the data store variables that it can read and/or write.
Approach for Hue:We followed the procedure for Hue described in Section 2.3 to get a unique
token that registers our single test app with the data store of our Hue bridge. In Hue, all the
variables of the data store are “readable” (i.e., we verified that all the variables described in the
developer documentation [37] can be read by third-party apps). Therefore, to build the permission
map, we first extracted the contents of the entire data store. Then, for each subsection within the
data store, our app made repeated write requests, i.e., PUT calls with the payload consisting of a
dummy value based on the variable type (i.e., String, Boolean and Integer). All the variables that
were successfully written to using this method were assigned as “writable” variables. Similarly,
our app made repeated DELETE calls to the API and the variables that were successfully deleted
were assigned as “writable” variables. This generated permission map applies to all third-party
apps connected to Hue, since the platform provides equal privilege to all third-party apps.
4.2 Analyzing Permission Maps
The objective behind obtaining the permission map is to understand the potential for application
overprivilege, by analyzing the granularity as well as the correctness of the enforcement. We
analyze the permission map to identify instances of (1) coarse-grained permissions, i.e., permissions
that give the third-party app access to a set of security-sensitive resources that must ideally be
protected under separate permissions, and (2) incorrect enforcement, i.e., when an app has access
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to more resources (i.e., state variables) than it should have given its permission set, as per the
documentation; e.g., apps on SmartThings may lock/unlock the door lock without the explicit
permission required to do so [12].

To perform this analysis, we first identified data store variables that may be security or privacy-
sensitive. This identification was performed using an open-coding methodology by one author,
and separately verified by another author, for each platform. We then performed further analysis
by separately considering each such variable, and the permission(s) that allow access to it. A
major consideration in our analysis is the security impact of an adversary being allowed read or
read/write access to a particular resource. Moreover, our evaluation of the impact of the access
control enforcement was contextualized to the platform under inspection. That is, when evaluating
Nest, we took into consideration the semantic meaning and purpose of certain permissions in
terms of the data store variables, as described in the documentation (e.g., that the Away read/write
permission should be required to write to the away variable [26]). For Hue, we only considered
the security-impact of an adversary accessing data store variables. Our rationale is that the Hue
platform defines the same static policy (i.e., same permissions) for all third-party apps, and hence, its
permission map can be simply said to consist of just one permission that provides access to a fixed
set of data store variables. As a result, we judge application over-privilege in Hue by considering the
impact of an adversarial third-party app reading from or writing to each of the security-sensitive
variables identified in Hue’s permission map.

The creation of the permission maps for both Nest and Hue requires the application of well-
studied automated testing techniques, and as such, can be replicated for similar platforms, with
minor changes to input data (e.g., the permissions to test for).

4.3 Permission Enforcement Findings (F1 → F3)
Finding 1: The permission enforcement in Nest is fine-grained and correctly enforced,
i.e., as per the specification (F1). We observe that the Nest permission map is significantly more
fine-grained, and permissions are correctly enforced, relative to the observations of prior research
in similar platforms (e.g., the analysis of SmartThings [12]). Some highly sensitive variables are
always read-only (e.g., the web_url where the camera feed is posted), and there are separate read
and read/write permissions to access sensitive variables. Variables that control the state of the
entire smart home are protected by dedicated permissions that control write privilege; e.g., the
away variable can only be written to using the Away read/write permission, the ETA variable has
separate permissions for apps to read and write to it (i.e., ETA read and ETA write), and the Nest
Cam can only be turned on/off via the is_streaming variable, using the Camera + Images read/write
permission that controls write access to it. Moreover, since many apps need to respond to the away
variable (i.e., react when the user is home/away), device-specific read permissions (e.g., Thermostat
read, Smoke + CO read) also allow apps to read the away variable, eliminating the need for apps to
ask for higher-privileged Away read permission. The separate read and read/write permissions are
correctly enforced, i.e.,our generated permission map provides the same access as is defined in the Nest
permission documentation [26]. This is in contrast with findings of similar analyses of permission
models in the past (e.g., the Android permission model [10], SmartThings [12]), and demonstrates
that the Nest platform has incorporated lessons from prior work in permission enforcement.
Finding 2: In Hue, the access control policy allows apps to bypass the user’s explicit
consent (F2).We discovered two data store variables that were not write-protected, and which
have a significant part to play in controlling access to the data store and the user’s smart home.
First, any third-party app can write to the linkbutton flag. Recall from Section 2.3 that the user
has to press the physical button on the Hue bridge device to authorize an app’s addition to the
bridge. The physical button press changes the linkbutton value to “true”, and allows the app to be
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added to the whitelist of allowed third-party apps. However, we discovered that once installed, an
app can toggle the linkbutton variable at will, enabling third-party apps to add other third-party
apps to the smart home without the user’s consent. This exploitable access control vulnerability can
allow an app with seemingly useful functionality to install malicious add-ons by bypassing the user
altogether. In our tests, we verified this attack with apps that were connected to the local network.
This condition is feasible as a malicious app that needs to be added without the user’s consent may
not even have to pretend to work with Hue; all it needs is to be connected to the local network (i.e.,
a game on the mobile device from one of the people present in the smart home). Note that it is also
possible to remotely perform this attack, which we discuss in Section 8 (F11).
Finding 3. In Hue, third-party apps can directly modify the list of added apps, adding
and revoking access without user consent (F3). Hue stores the authorization tokens of apps
connected to the particular smart home in a whitelist on the Hue Bridge device. While analyzing
the permission map, we discovered that not only could our third-party test app read from this list,
it could also directly delete tokens from it. We experimentally confirmed this finding again, by
removing Alexa and Google Home from the smart home, without the user’s consent. An adversary
could easily combine this vulnerability with (F2), to remove legitimate apps added by the user, add
adversary-controlled apps (i.e., by keeping the linkbutton “true”), all without the user’s consent.
More importantly, users do not get alerts when such changes are made (i.e., since it is assumed that
the enforcement will correctly acquire user consent). Hence, unless the user actually checks the list
of integrated apps using the Hue Web app, the user would not notice these changes.

While the Nest permission model is robust in its mapping of data store variables and permissions
required to access them, Section 5 demonstrates how fields disallowed by permissions may be
indirectly modified via strategic misuse of routines, and describes Nest’s product review guidelines
to prevent the same [28]. Section 6 describes how badly written and overprivileged apps escape
these review guidelines, and motivate a technical solution.
5 EVALUATING SMART HOME ROUTINES
Prior work has demonstrated that in platforms that favor application interoperability but lack
transitive access control enforcement, problems such as confused deputy and application collusion
may persist [5, 11, 24, 25]. Smart homes that facilitate routines are no different, but the exploitability
and impact of routines on smart homes is unknown, which motivates this aspect of our study.
Recall that routines are trigger-action programs that are either triggered by a change in some

variable of the data store, or whose action modifies certain variables of the data store. While
both Nest and Hue share this characteristic, routines in Hue are fairly limited in scope, and their
exploitation is bound to only affect the lighting of the smart home. As a result, the security analysis
in this section is focused on the heterogeneous Nest platform that facilitates more diverse routines.
5.1 Methodology for the Analysis of Routines
While using the simulator as described in Section 4 allows us to understand what routines are
possible on the platform, i.e., what variables might be manipulated, and what Nest devices (e.g., the
Nest Cam, Nest Thermostat) are affected as a result, we performed additional experiments with
real apps and devices to study existing routines in the wild. For this experiment, we extended the
smart home setup previously discussed in Section 4 with real devices.
We started by collecting a list of devices that integrate with Nest from the Works with Nest

website [32]. Using this initial list and information from the website, we purchased a set of 7
devices that possessed a set of characteristics relevant to this study, i.e., devices that (1) take part in
routines (i.e., as advertised on the website), (2) are important for the user’s security or privacy, and
(3) are widely-known/popular with a large user base (i.e., determined by the number of installs
of the mobile client on Google Play). We obtained a final list of devices (7 real and 2 simulated)
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to our Nest smart home, namely, the Nest Cam (i.e., a security camera), Hue light bulb, Belkin
Wemo switch, the MyQ Chamberlain garage door opener, TP Link Kasa Smart Plug, Google Home,
Alexa, Nest Thermostat (simulated), and the Nest Protect Smoke & CO Alarm (simulated). Some
security-sensitive devices did not participate in routines at the time of the study, and hence were
excluded from our final device list.

We connected these devices to our Nest smart home using the Android apps provided by device
vendors, and connected a small set of smart home managers (e.g., Yeti [56] and Yonomi [57]) to our
Nest smart home as well. For each device, we set up and executed every routine described on the
Works with Nest as well as on the device vendor’s website, and observed the effects on the rest of
the smart home (especially, security-sensitive devices). Also, we manipulated data store variables
from our test app, and observed the effects on previously configured routines and devices.

5.2 Smart Home Routine Findings (F4 → F5)
Finding 4. Third-party apps that do not have the permission to turn on/off the Nest Cam
directly, can do so by modifying the away variable (F4). The Nest Cam is a home monitoring
device, and important for the users’ security. The is_streaming variable of the Nest Cam controls
whether the camera is on (i.e., streaming) or off, and can only be written to by an app with the
permission Camera r/w. The Nest Cam provides a routine as a feature, which allows the camera
to be automatically switched on when the user leaves the home (i.e., when the away variable of
the smart home is set to “away”), and switched off when the user returns (i.e., when away is set to
“home”). Leveraging this routine, third-party apps such as the Belkin Wemo switch can manipulate
the away field, and indirectly affect the Nest Cam, without having explicit permission to do so. We
tested this ability with our test app (see Section 4) as well, which could indirectly switch the camera
on and off at will. This problem has serious consequences; e.g., a malicious test app with the away
r/w permission may set the variable to “home” when the user is away to prevent the camera from
recording a burglary. The key problem here is that a low-integrity device/app can trigger a change in
a high-integrity device indirectly, i.e., by modifying a variable it relies on, which is an instance of
the well-known information flow integrity problem. Moreover, this is not the only instance of a
high-integrity routine that relies on away; e.g., the Nest x Yale Lock can lock automatically when
the home changes to away mode [54].
Nest has a basic defense to prevent such issues: application design policies that apply to apps

with more than 50 users [28]. App developers are required to submit their app for a product review
to the Nest team once the app reaches 50 users, and a violation of the rather strict and detailed
review guidelines can result in the app being rejected from using the Nest API. One of the review
policies (i.e., specifically policy 5.8) states that “Products that modify Home/Away state automatically
without user confirmation or direct user action will be rejected.” [28]. Nest users may be vulnerable
in spite of this defense, for two reasons. First, as attacking a smart home is an attack on a user’s
personal space, it is feasible to assume that most attacks that exploit routines will be targeted (e.g.,
to perform burglaries). Assuming that the adversary can use social engineering to get the user to
connect a malicious app to their Nest setup, a targeted attack on a specific user will succeed in spite
of the policy, as the app would be developed solely for the targeted user and hence will have <50
users, and be exempt from the Nest product review. Second, it is unclear how apps are checked
against this policy; our next finding demonstrates a significant omission in Nest’s review.
Finding 5. Nest’s product review policies dictate that the apps must prompt users before
modifying away , but there is no official constraint on what the prompt may display (F5).
Consider an example in Figure 3, which shows one such prompt by the Keen Home app [53] when
the user tries to change the temperature of the thermostat. That is, when the user tries to change
the temperature of the thermostat while the away variable is set to “away”, the app requires us to
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Fig. 3. The Keen Home app asks the user to modify the thermostat’s mode, but in reality, this action leads to
the entire smart home being set to “home” mode, which affects a number of other devices.

change it to “home” before the thermostat temperature can be changed. This condition is entirely
unnecessary to change the temperature. More importantly, it presents the prompt to the user in a
way that states that the home/away modes are specific to the HVAC alone. This is in contrast to the
actual functionality of these modes, in which a change to the away variable affects the entire smart
home; i.e., we confirmed that the Nest Cam gets turned off as well once we agree to the prompt.
It is important to note that the Keen Home app has successfully passed the Nest product review,
and has over 1000 downloads on Google Play [15]. This case demonstrates that the Nest product
review does not consider the contents of the prompt, and a malicious app may easily misinform
the user and make them trigger the away variable to the app’s advantage. Finally, in Section 6.1
we demonstrate that the problem of misinforming the user is not just limited to runtime prompts
described here, but extends to application-defined install-time permission descriptions (F6→F9).

6 SECURITY ANALYSIS OF NEST APPS
In this Section, we investigate the third-party apps integrated with Nest. Unlike prior work [12],
we not only report the permissions requested by apps, but also analyze the permission descriptions
displayed to the user at install-time. Additionally, we analyze the rate of SSL misuse by both general
smart home management apps as well as apps integrated with Nest. For this section, we do not
consider the Hue platform as it has a limited ecosystem of apps as compared to Nest. We derived
two datasets to perform the analyses that we describe in this section, the Apps𝑔𝑒𝑛𝑒𝑟𝑎𝑙 dataset, which
contains 650 smart home management apps extracted from Google Play, and the Apps𝑛𝑒𝑠𝑡 dataset,
which includes 39 apps that integrate into the Nest platform (out of the total 130 Works with Nest
apps, i.e., 30%). Thus, while we cannot say that our analysis and findings (F6→F9) generalize to all
the apps compatible with Nest, they certainly apply to a significant minority (i.e., 30%). Our online
appendix [1] details our dataset collection methodology.
6.1 Application Permission Descriptions
In the Nest platform, developers provide permission descriptions that explain how an app uses a
permission while registering their apps in the Nest developer console. These developer-provided
descriptions are the only direct source of information available to the user to understand why an
app requires a particular permission, i.e., Nest itself only provides a short and generic permission
“title” phrase that is displayed to the user along with the developer-defined description (e.g., for
Thermostat read, the Nest phrase is “See the temperature and settings on your thermostat(s)”).
Owing to their significant role in the user’s understanding of the permission requirements, we
analyze the correctness of such developer-defined descriptions relative to the permissions requested.

6.1.1 Analysis Methodology. As described in Section 2, upon registering permissions at the devel-
oper console, developers are granted an OAuth URL that they can direct the user to for obtaining
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Table 1. Permission description violations discovered in Works with Nest apps
Application Incorrect Permission Description

VC1: Requesting Read/Write instead of Read
1. Home alerts “thermostat read/write: Allows Home alerts to notify you when the Nest temperature

exceeds your threshold(s)”
2. Home alerts “away read/write: Allows Home Alerts to notify you when someone is in your home while

in away-mode”
3. MyQ Chamberlain “thermostat read/write: Allows Chamberlain to display your Nest Thermostat temperature

in the MyQ app”
4. leakSMART “thermostat read/write: Allows leakSMART to show Nest Thermostat room temperature

and humidity. New HVAC sensor mode will notify you to shut off your thermostat if a leak is
detected in your HVAC system.”

5. Simplehuman Mirror “Camera+Images read/write: Allow your simplehuman sensor mirror pro to capture and
recreate the light your Nest Cam sees”

6. Iris by Lowe’s “structure read/write: View your Nest Structure names so Iris can help you pair your Nest
Structures to the correct Iris Places”

7. Heatworks model 1 “away read/write: Allows the Heatworks MODEL 1 to be placed into vacation mode to save
on power consumption while you’re away”

8. Feather Controller “Camera+Images read/write: Allows Feather to show you your camera and activity images.
Additionally, Feather will allow you to request a snapshot.”

9. Heatworks model 1 “thermostat r/w: Allows your Heatworks MODEL 1 water heater to go into vacation mode
when your home is set to away”

VC2: Describing Away as a property of the thermostat alone, rather than something that affects the entire smart home
10. Gideon “away read/write: Allows Gideon to read and update the Away state of your thermostat”
11. Muzzley “away read/write: Allows Muzzley to read and update the Away state of your thermostat”
12. Keen home smart vent “away read/write: Allows Smart vent to read the state of your Thermostat and change the

state from Away to Home”
VC3: Both VC1 and VC2

13. WeMo “away read/write: Allows your WeMo products to turn off when your Nest Thermostat is
set to Away and on when set to Home.”

14. IFTTT thermostat service “thermostat read/write: Now you can turn on Nest Thermostat Applets that monitor when
you’re home, away and when the temperature changes.”

VC4: Descriptions that do not relate to the permission
15. IFTTT thermostat service “away read/write: Now you can set your temperature or turn on the fan with Nest Thermostat

Applets on IFTTT”
16. Life360 “away read/write:We need this permission to automatically turn on/off your nest system”

an access token. As a result, permissions are not encoded in the client mobile app or Web app (i.e.,
unlike Android), which makes the task of extracting permissions difficult. However, we observe
that the permissions that an app asks for are always displayed to the user for approval (i.e., when
first connecting an app to their Nest smart home using OAuth). We leverage this observation to
obtain permissions dynamically, i.e., by executing apps to the point of integrating them with our
Nest smart home, and recording the permission prompt displayed for the user’s approval.

6.1.2 Nest App Findings (F6→F9). The two permissions that dominate the permission count are
Away read/write and Thermostat read/write, requested by 20 and 24 apps respectively, from the
Apps𝑛𝑒𝑠𝑡 dataset. Our specific findings from this analysis are as follows:
Finding 6. A significant number of apps provide incorrect permission descriptions, which
may misinform users (F6). As shown in Table 1, we found a total of 15 permission description
violations in 13/39 apps from the Apps𝑛𝑒𝑠𝑡 dataset. We classify these incorrect descriptions into
four violation categories (i.e., VC1 → VC4), based on the specific manner in which they misinform
the user, such as requesting more privileges than required for the described need (e.g., read/write
permissionswhen only reading is required), ormisrepresenting the effect of the use of the permission
(e.g., stating Away as affecting only the thermostat). That is, over 33.33% of the apps we could integrate
have violating permission descriptions.
Finding 7. In most cases of violations, apps request read/write permissions instead of
read (F7). In nine cases, apps request the more privileged read/write version of the permission,
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Fig. 4. An example from the Nest documentation on OAuth authorization [27] that displays a permission
description violation (specifically, VC1) for the Away r/w and Camera + images r/w permissions. The developer’s
permission description indicates that the FTL Lights only need to read data store variables, in both cases.

when they should have clearly requested the read version, as per their permission description (i.e.,
VC1 in Table 1). For example, consider the “MyQ Chamberlain” app (Table 1, entry 3), which asks
for the thermostat read/write permission, but whose description only suggests the need for the
thermostat read permission, i.e., “Allows Chamberlain to display your Nest Thermostat temperature
in the MyQ app”. More importantly, a majority of the violations of this kind occur for the Away
read/write and Camera+Images read/write permissions, which may have serious consequences
if these overprivileged apps are compromised, i.e., as Away read/write regulates control over
indicating whether a user is at home or out of the house, and Camera+Images read/write may
allow apps to turn off the Nest cam via the is_streaming variable. These violations exist in spite of
Nest guidelines that mention the following as a Key Point: “Choose ‘read’ permissions when your
product needs to check status. Choose ‘read/write’ permissions to get status checks and to write data
values.” [26]. Finally, we found that the Nest documentation may itself have incorrect instructions,
e.g., the Nest’s documentation on OAuth 2.0 authentication [27] shows an example permission
prompt that incorrectly requests the Away read/write permission while only needing read access,
i.e., with the description “FTL Lights turn off when the room is empty”, as shown in the Figure 4.
Finding 8. The Nest product review is insufficient when it comes to reviewing the correct-
ness of permission descriptions and requests by apps (F8). The Nest product review suggests
the following two rules, violating which may cause apps to be rejected: (1) “3.3. Products with names,
descriptions, or permissions not relevant to the functionality of the product”, and (2) “3.5. Products
that have permissions that don’t match the functionality offered by the products” [28]. Our findings
demonstrate that the 16 violations discovered violate either one or both of these rules (e.g., by
requesting read/write permissions, when the app only requires read). The fact that the apps are still
available suggests that the Nest product review may not be rigorously enforced, and as a result,
may be insufficient in protecting the attacks discovered in Section 5.
Finding 9. Apps often incorrectly describe the Away field as a local field of the Nest
thermostat, which is misleading (F9). One example of this kind (VC2 in Table 1) is the Keen
Home app described in Section 5 (Table 1. entry 12), which states that it needs Away read/write in
order to “Allow Smart vent to read the state of your Thermostat and change the state from Away to
Home”. As a result, Keen Home misrepresents the effect and significance of writing to the Away
field, by making it seem like Away is a variable of the thermostat, instead of a field that affects
numerous devices in the home. Gideon and Muzzley (entries 10 and 11 in Table 1) exhibit a similar
anomaly. Our hypothesis is that such violations occur because Nest originally started as a smart
thermostat that gradually evolved into a smart home platform. Finally, in addition to misleading
descriptions classified as VC1 and VC2, we discovered apps whose permission descriptions did not
relate to the permissions requested (VC4), and apps whose descriptions satisfied both VC1 and VC2
(VC3).
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The accuracy of permission descriptions is important, as the user has no other source of infor-
mation upon which to base their decision to trust an app. Nest recognizes this, and hence, makes
permissions and descriptions a part of its product review. The discovery of inaccurate descriptions
not only demonstrates that apps may be overprivileged, but also that Nest’s design review process
is incomplete, as it puts all its importance on getting the user’s consent via permission prompts
(e.g., in Findings 5→9), but not on what information is actually shown.
6.2 Application SSL Use
The previous section demonstrated that smart home apps may be overprivileged in spite of a
dedicated product review. An adversary may be able to compromise the smart home by exploiting
vulnerabilities in such overprivileged apps. Thus, we decided to empirically derive an estimate of
how vulnerable smart home apps are in terms of their use of SSL APIs, an important attack surface.

We used two datasets for this experiment, i.e., the Apps𝑔𝑒𝑛𝑒𝑟𝑎𝑙 dataset consisting of 650 generic
smart home (Android) apps crawled from Google Play, and an extended version of the Apps𝑛𝑒𝑠𝑡
dataset, i.e., the Apps𝑛𝑒𝑠𝑡𝐸𝑥𝑡 dataset, which consists of 111 Android apps built for Works with Nest
devices (i.e., including the ones for which we do not possess devices). We analyzed each app from
both the datasets using MalloDroid [9], to discover common SSL flaws.
Finding 10. A significant percentage of general smart home management apps, as well as
apps that connect to Nest have serious SSL vulnerabilities (F10). 20.61% (i.e., 134/650) of the
smart home apps from the Apps𝑔𝑒𝑛𝑒𝑟𝑎𝑙 dataset, and 19.82% (i.e., 22/111) apps from the Apps𝑛𝑒𝑠𝑡𝐸𝑥𝑡
dataset, have at least one SSL violation as flagged by MalloDroid. Specifically, in the Apps𝑛𝑒𝑠𝑡𝐸𝑥𝑡
dataset, the most common cause of an SSL vulnerability is a broken TrustManager that accepts
all certificates (i.e., 20 violations), followed by a broken HostNameVerifier that does not verify the
hostname of a valid certificate (i.e., 11 violations). What is particularly worrisome is that apps such
as MyQ Chamberlain andWemo have multiple SSL vulnerabilities as well as the Away read/write
permission. Next, we demonstrate an end-to-end attack on the Nest security camera, using one of
the SSL vulnerabilities discovered from this analysis, and the NestAway read/write permission.

7 LATERAL PRIVILEGE ESCALATION
While our findings from the previous sections are individually significant, we demonstrate that
they can be combined to form an instance of a lateral privilege escalation attack [38], in the context
of smart homes. That is, we demonstrate how an adversary can compromise one product (device/app)
integrated into a smart home, and escalate privileges to perform protected operations on another
product, leveraging routines configured via the centralized data store.
This attack is interesting in the context of smart homes, because of two core assumptions

that it relies on (1) low-integrity (or non-security) smart home products may be easier to directly
compromise than high-integrity devices such as the Nest Cam (i.e., none of the SSL vulnerabilities in
F10 were in security-sensitive apps), and (2) while low-integrity devices may not be able to directly
modify the state of high-integrity devices (F1), they may be able to indirectly do so via automated
routines triggered by global smart home variables (F4). (3) Moreover, since the low-integrity device
is not being intentionally malicious, but is compromised, the product review process would not
be useful, even if it was effective (which it is not, as demonstrated by F5→F9). This last point
distinguishes a lateral privilege escalation from actions of malicious apps that trigger routines
(e.g., the “fake alarm attack” discussed in prior work [12]). These conditions make lateral privilege
escalation particularly interesting in the context of smart home platforms.
Attack Scenario and Threat Model:We consider a common man-in-the-middle (MiTM) scenario,
similar to the SSL-exploitation scenarios that motivate prior work [9, 40]. Consider Alice, a smart
home user who has configured a security camera to record when she is away (i.e., using the away
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Listing 1. The Kasa app’s unencrypted GET request.
1 {"data":{"uri":"com.tplinkra.iot.authentication.impl.RetrieveAccountSettingRequest"},
2 "iotContext":
3 {"userContext":{"accountToken":"<anonymized alphanumeric token>",
4 "app":{"appType":"Kasa_Android"},
5 "email":"<anonymized>",
6 "terminalId":"<anonymized>"}}, ...

variable in the centralized data store). Bob is an acquaintance (e.g., a disgruntled employee or an
ex-boyfriend) whose motive is to steal a valuable from Alice’s house without being recorded by the
camera. We assume that Bob also knows that Alice uses a smart switch in her home, and controls it
via its app, which is integrated with Alice’s smart home. Bob follows Alice, and connects to the
same public network (e.g., a coffee shop), sniffs the access token sent by the switch’s app to its
server using a known SSL vulnerability in the app, and then uses the token to directly control the
away variable. Setting the away to “home” confuses the security camera into thinking that Alice is
at home, and it stops recording. Bob can now burglarize the house without being recorded.
The Attack: The example scenario described previously can be executed on a Nest smart home,
using the Nest Cam and the TP Link Kasa switch (and the accompanying Kasa app). We compromise
the SSL connection of Kasa app, which was found to contain a broken SSL TrustManager in our
analysis described in Section 6. We choose Kasa app as it requests the sensitive Away read/write
permission, and has a sizable user base (1M+ downloads on Google Play [14]). It is interesting to
note that the Kasa app has also passed the Nest product review process and is advertised on the
Works with Nest website [29], but can still be leveraged to perform an attack. We use bettercap [2]
as a MiTM proxy to intercept and modify unencrypted data. Additionally, as described in the attack
scenario, we assume that (1) the victim’s Nest smart home has the Nest Cam and the Kasa switch
installed, (2) the popular routine which triggers the Nest Cam to stop recording when the user is
home is enabled, and (3) the user connects her smartphone to a network to which the attacker has
access (e.g., coffee shop, office), which is a common assumption when exploiting SSL-misuse [9, 40].

The attack proceeds as follows: (1) The user utilizes the Kasa app to control the switch, while the
user’s mobile device is connected to public network. (2) The attacker uses a MiTM proxy to intercept
Kasa app’s attempt to contact its own server, and supplies the attacker’s certificate to the app during
the SSL handshake, which is accepted by the Kasa app due to the faulty TrustManager. (3) The
Kasa app then sends an authorization token (see Listing 1) to the MiTM proxy (i.e., assuming it is
the authenticated server), which is stolen by the attacker. This token authorizes a particular client
app to send commands to the TP Link server. (4) Using the stolen token, the attacker instructs the
TP Link server to set the smart home’s away variable to “home”, while the user is actually “away”.
This action is possible as the TP Link server (i.e., Web app) has the -Away read/write permission for
the user’s Nest smart home. (5) This triggers the routine in the Nest Cam, which stops recording.

In sum, the attacker compromises a security-insensitive (i.e., low-integrity) product in the system,
and uses it along with a routine to escalate privileges, i.e., to modify the state of a security-sensitive
(i.e., high-integrity) product. It should be noted that while this is one verified instance of a lateral
privilege escalation attack on DSB smart home platforms, given the broad attack surface indicated
by our findings, it is likely that similar undiscovered attacks exist.

8 VULNERABILITY REPORTING EXPERIENCE AND CURRENT STATUS
We reported the discovered vulnerabilities to Philips (F2, F3), Nest/Google (F4→F10), and TP Link
(F10) in mid-2018. Since then, vendors have responded, confirmed our findings, and even deployed
fixes. This section describes our reporting experience with the vendors, if any fixes were deployed,
the effectiveness of those fixes, backed by additional experimental analysis.
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8.1 SSL Vulnerability in TP Link’s KASA
We reported the details of the SSL vulnerability exploited in Section 7 to TP-Link, who acknowledged
the issue and resolved it to a bug in the Android 4.x compatibility library. While TP Link did not
elaborate on the exact part of the library that was problematic, they stated that future updates of
the Kasa app would contain a fix. We statically and dynamically analyzed the most recent version
of the Kasa app (version 2.13.0.858), and confirmed that (1) the vulnerable lines of code (i.e., a
TrustManager that accepts all certificates) were still present, however, (2) they were not being used
for SSL connections, as our dynamic MiTM attack (Section 7) did not work.

8.2 Vulnerable Nest routines, and misinformation in third-party Works with Nest apps
Nest does not have a dedicated issue tracker for developers to report security vulnerabilities. There-
fore, we provided a detailed bug report to Nest through their customer support, split into two
reports: (1) Report 1, describing the vulnerability of security-sensitive Nest devices to lateral privi-
lege escalation, via routines (F4), and (2) Report 2, describing the inconsistent prompts, permission
descriptions, and SSL misuse in third-party Works with Nest apps ( F6,F7, F9, F10), as well as the
problems in Nest’s product review process (F5 and F8).
1. Response from Nest: Nest did not confirm Report 1, but acknowledged that it was forwarded to
their concerned engineers. Moreover, Nest recommended us to publicly disclose Report 2, along with
the identities of the offending apps, in the Nest community forum 2 to bring the matter to the attention
of Nest developers. However, as Report 2 contained sensitive information involving potentially
vulnerable and overprivileged apps, we decided against disclosing it in a public forum and asked
Nest to notify the developer through a private channel, but received no further response.

Due to the lack of a sufficient response from Nest, we directly submitted two reports to Google
through their bug reporting system3. Note that Nest operated independently from Google from
2015 to 2018, and hence, reporting to Google was a non-obvious step at that time.
2. Google’s response to Report 1 and current status: Initially, a member of Google’s security
team suggested that the lateral privilege escalation was purely due to the SSL vulnerability in TP
Link’s KASA app, and hence, not relevant to Google or Nest. However, we explained how routines
in Nest were key for the attack, which could be leveraged by compromising any low-security device
(and not just KASA), the engineers assigned to the bug report acknowledged the existence of a
design-level flaw in Nest routines. Further, we also clarified that the attacker did not have to be
on the victim’s network to perform the attack. When asked for suggestions to improve the design
and rectify the flaw, we provided three concrete recommendations, namely: warning users before
enabling routines that affect security-sensitive devices, thorough application reviews to identify
overprivileged apps, and temporarily suspending/deprecating routines that affect security-sensitive
devices based on a state variable that can be written by untrusted third-party applications. However,
we realize that either of these suggestions may not be acceptable to the platform considering the
negative impact on user experience. This exchange highlights the need for platforms to make changes
at a design level, as fixing these problems after they have already occurred is hard.
3. Google’s response to Report 2 and current status: As of today, most of the issues described in
this report remain un-addressed, including the instances of misinformation in the Nest documentation
itself (see F7). Google’s response was that the onus of fixing these issues in apps was on the third-
party app developers to review the permissions that their apps request. Due to this, Google, like
Nest, suggested that the findings could be disclosed to the developers either directly or through

2https://www.nest-community.com/s/
3https://www.google.com/appserve/security-bugs/m2/new
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their product forums. However, it should be noted that all the reported apps had undergone
direct scrutiny from Nest through their review process and passed that process before deployment
to the end-user. Moreover, overprivileged apps that violate the platform’s review process are
harmful for the platform, as they may be leveraged by attackers to perform privilege escalation, as
demonstrated previously in this paper. This exchange brings up a crucial question, for situations
where the platform may not be willing to even address the over-privilege in existing apps when
reported by consumers or researchers:Who should the end-user should deem liable in the instance
of a security incidence involving a smart home app; the developer of an overprivileged app, or the
platform that vetted the app and allowed users to install it?

8.3 Permission Enforcement Vulnerabilities in Hue
We reported findings F2 and F3 to Philips Lighting (i.e., the owner of the Hue brand) along with a
proof-of-concept script demonstrating the attacks. Philips Lighting acknowledged the existence of
the vulnerabilities and confirmed that they were working on a firmware update that would deploy
access control policies to address the issues, and were manually curating a list of verified apps as a
stopgap measure in the meanwhile.
Hue informed us that the latest release version 1931069120 mitigates these vulnerabilities. Ac-

cording to the API changelog published with the firmware update, Hue claims to have made two key
changes to the Hue data store to address F2 and F3, i.e., ensured that (1) applications cannot write
to the linkbutton variable and (2) whitelist entries can only be deleted via a cloud application-key.

This section describes our efforts to experimentally evaluate these claims, and their effectiveness
at addressing F2 and F3. Our analysis relies on the two kinds of third-party apps allowed on Hue,
i.e., local and cloud apps, which we describe next, followed by our methodology and findings.
Local and Cloud Hue apps: Our exploits for the Philips Hue platform demonstrated in Section 4
(F2 and F3) can be executed from a local app, i.e., a third-party app installed on a device connected
to the same local network as the Hue bridge. For a feasible attack via a local app, the attacker-
controlled app simply needs to be on the same network (i.e., not necessarily on a device owned by
the user). However, Hue supports another kind of third-party app, a cloud app, which uses the Hue
remote API to remotely issue commands to the lights, and unlike local apps, does not need to be
connected to the local network (however, it does need a proxy local app, as we discuss later).

8.3.1 Analyzing the Updated Hue API, from both local and remote apps. We tested the effectiveness
of Hue’s mitigations from both an attacker-controlled local app (wmlocalapp), as well as a cloud
app (wmremoteapp). That is, we first used wmlocalapp (created in Section 4) to test whether our
exploits for F2 and F3 still worked on the new Hue local API. Then, we created a cloud app named
wmremoteapp in Hue’s developer portal by specifying only its name, a brief description, and OAuth
callback URL, which was instantly approved after submission to Hue (i.e., may not have undergone
any review, beyond some extremely lightweight static analysis at most).
Further, as all the commands to the Hue lights are executed through the Hue bridge, we had

to register a local app that would act as a proxy for the cloud app to execute requests through
the Hue bridge (i.e., wmlocalproxyapp). The process for registering this proxy is interesting, as
it has direct implications on Hue’s security claims, and our findings from this experiment: we
used the access token for the remote app to remotely issue a linkbutton=true command to the
hue endpoint URL https://api.meethue.com/bridge/0/config, which simulated the button-press on
the Hue bridge for a brief period of time, within which wmremoteapp issued a POST request to
whitelist its local proxy app (i.e.,wmlocalproxyapp). At the end of this process, we were issued
a cloud application key, with which we could make calls identical to the local API calls, via the
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endpoint URL https://api.meethue.com/bridge/<application-key>. We used this cloud application
key to attempt our exploits for F2 and F3 in a scenario where the attacker controls a cloud app.

8.3.2 Key Results. Our analysis reveals that while Hue’s changes indeed address some of the major
shortcomings of its access control policy, the platform is still vulnerable.

Specifically, we confirmed that F3 no longer affects Hue, i.e., the new version prevents apps from
deleting other apps from the whitelist. Further reverse-engineering revealed that Hue enforces this
policy by obfuscating the application-key of the apps in the whitelist section of the data store. That
is, apps cannot delete what they cannot address. However, this also means that the effectiveness
of the mitigation relies on the complexity of the obfuscation; it will be invalid once an adversary
devises a way to generate obfuscated names from arbitrary application metadata. An access control
policy for the whitelist (i.e.,which Hue had discussed with us earlier as a possible mitigation) would
be a more fundamental solution to this problem. Further, we discovered that F2 still holds, and even
bypasses Hue’s product review-based defenses, which leads to the following finding:
Finding 11. Cloud apps can bypass user consent repeatedly (F11). Since a cloud app must have
an accompanying local app to execute commands using the Hue bridge, it is reasonable to allow
cloud apps with a valid OAuth token to modify the linkbutton and add their local counterpart app
remotely. However, in our experiments, we discovered that wmcloudapp could modify linkbutton
repeatedly, and thus, register multiple local apps. Moreover, local apps are not bound to the remote
app that installed them. Hence,wmcloudapp could install as many local apps as we wanted, and they
would persist even after the user removed the misbehaving wmcloudapp. The most important facet
of this problem is that our misbehaving wmcloudapp is registered with Hue, and hence it would
have been possible for users to install it. However, note that we ensured that our misbehaving app
was clearly marked as a test application, and that no real user installed it during our experiments.

9 THE FEASIBILITY OF ANALYZING EVOLVING SMART HOME PLATFORMS
The market for smart home products and platforms is now reaching a critical mass in terms of
consumer adoption. This has resulted in an ecosystem of rapidly evolving and fragmented platforms.
As of now, we do not have a concrete understanding of how platform evolution helps, or hurts, the
applicability of existing security analysis approaches. Acquiring such an understanding would be
instrumental in helping future security researchers recognize the opportunities as well as challenges
posed by evolving characteristics of smart home platforms.
We pose a seemingly simple but nuanced research question: How feasible would the analysis

performed in this paper be on smart home platforms in the near future? To address this question,
we (1) identify the essential, platform-independent properties that facilitate the security analyses
explored in this paper, and (2) evaluate six additional platforms to understand if they exhibit these
properties. We conclude the section by identifying the foremost challenge for similar research in
the future, drawing from the evidence obtained in our evaluation.

9.1 Platform-independent essential properties
The security evaluation performed in Sections 4→6 can be categorized into five independent
analyses: (A1) an analysis of platform permission enforcement, (A2) the accuracy of install-time
permission descriptions, (A3) the accuracy of runtime permission prompts , (A4) the security impact
of routines, and (A5) SSL misuse by third party mobile apps. We now identify the five platform-
independent essential properties that facilitate these analyses:
Property 1 - (P1): Availability of public API access to test permission enforcement. In order
to test whether the purported permission enforcement mechanisms that exist in a given platform
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Table 2. Feasibility of Analyses A1→A5 on various smart home platforms.
Analysis Nest v1 Nest v2 SmartThings

Classic
SmartThings
v2

HomeKit Home As-
sistant

OpenHAB

A1 : Permission Enforcement ✓ × ✓ ✓ ✓ ✓ ×
A2 : Permission Description Accuracy ✓ × × × ✓ × ×
A3 : Permission Prompt Accuracy ✓ × × × × × ×
A4 : Impact of Routines ⊘ ⊘ ✓ ⊘ ⊘ ✓ ✓

A5 : SSL Misuse in Third Party Apps ✓ ⊘ ✓ ⊘ ✓ ✓ ✓

✓= feasible, × = not feasible, and ⊘ = partially feasible

function properly in practice, it is necessary to have access to public facing platform APIs that
would enable us to generate permission maps via automated testing (i.e., for A1, Section 4).
Property 2 - (P2) Platform-mandated third-party-specified permission descriptions. Smart
home platforms generally inform users about the effect of platform permissions (e.g., that the
home/away r/w permission can “Set Home and Away”, as seen in Figure 4). However, some
platforms (e.g., Nest) may also require developers to provide additional context to the user, via
install-time permission descriptions describing why their app needs a particular permission. The
availability of such descriptions is critical for understanding how applications may misinform users
about their actual intent, and violate platform design policies (i.e., for A2, Section 6.1).
Property 3 - (P3) Platform-mandated third-party-specified runtime permission prompts.
In addition to install-time descriptions, platforms may also require applications to use run-time
prompts before performing a sensitive action (e.g., as Nest does for home/away), thereby allowing
the user to make a more informed decision. These prompts are necessary to understand if a
third-party application’s actual use of a permission is valid (i.e., for A3, Section 5).
Property 4 - (P4) Published third-party routines for home automation. Routines or automa-
tions are generally supported by platforms through third-party integrations, i.e., by integrating
devices directly via Zigbee or Z-wave, or indirectly by provisioning API access to third-parties,
or through third-party IoT apps hosted on the platform itself (e.g., SmartThings SmartApps). As
routines may be exploited by attackers, the availability of third-party routines is critical for assess-
ing the presence or prevalence of vulnerabilities that would facilitate attacks such as the lateral
privilege escalation attack explored in this paper (i.e., for A4, Sections 5 and 7).
Property 5 - (P5) Availability of third-party mobile applications. Smart home platforms
are inextricably tied to mobile apps that provide users with a convenient means of controlling
various aspects of their smart home, and even facilitate routines (e.g., Yeti [56] and Yonomi [57]). The
availability of mobile apps is not only needed for analyzing the security of the communications used
by the apps themselves (i.e., for A5, Section 6.2), but also for understanding the use of permission
descriptions and prompts by third-parties (i.e., for A2→A3, Sections 5 and 6.1).
9.2 Evaluation of 6 Additional Smart Home Platforms
We analyzed six smart home platforms (in addition to Nest and Hue) for the presence of properties
P1→P5, in order to understand the feasibility of performingA1→A5 on them. Table 2 summarizes
the results of this feasibility analysis. We now provide a brief overview of our general empirical
evaluation methodology, followed by the results of the feasibility analysis for each platform.
General EvaluationMethodology:We followed a systematic, 4-step methodology for the feasibil-
ity analysis: (1) Platform Selection.We selected six platforms from popular publicly available smart
home platforms, based on one foundational trait that precedes P1→P5: allowing the integration of
third-party routines, mobile apps, and devices. (2) Testing for Public APIs. For each platform,
we then determined the availability of public APIs from all available sources (e.g., documentation,
official website). If we could register as a developer with the platform, acquire an API key, and make
API calls to access platform resources, we considered P1 satisfied (i.e., conversely, platforms that
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allowed API access to a limited/closed set of partners did not satisfy P1). (3)Analyzing Permission
Models. We examined the provided developer documentation to extract the permission model, and
to determine if developers were required to specify custom install-time permission descriptions (P2)
and runtime prompts (P3) to provide users with more context. Moreover, we examined whether
the prompts could be programmatically triggered for analysis through integration of our own test
app/device to the platform (i.e., and hence, tested the extent to which P3 was satisfied). (4) Mining
third-party clients.We tried to acquire artifacts that represent routines, such as IoT apps published
in markets (e.g., the SmartThings public repo [44]), descriptions of automation in text-form on the
platform’s website (e.g., the Works with Nest website [32]), or automations enabled by third-party
mobile apps integrated with the platform. Aside from testing for P4, this step also allowed us to
test for P5 (i.e., as we searched for mobile apps as well).

We carefully considered platform-specific nuances when executing Steps 1→4, and experimen-
tally confirmed our claims for all platforms. The rest of this section provides a brief overview
of each analyzed platform, followed by a summary of our analysis results.

9.2.1 Nest v1 and v2. Google is closing its Works with Nest platform on August 31, 2019 in favor of
a more tightly-integrated Works with Google Assistant platform.4 We term this new platform Nest
v2, while the current version we analyzed in Sections 4→7 of this paper is termed as Nest v1. The
transition from v1 to v2 impacts the feasibility of security analysis, as it changes the fundamental
nature of Nest, i.e., from an open, decentralized platform to a relatively closed platform (i.e., with
API access to select vendors) centralized around the Google Assistant.
Results of the Feasibility Evaluation for Nest v2: From our analysis, we conclude that the closed
nature of Nest v2 violates most of the properties, rendering corresponding analyses performed in
this paper infeasible. For instance, the ability of researchers to access the API in Nest v2 will be
constrained, as the platform is geared towards helping vendors integrate their devices or products
with Google Assistant. At most, researchers will be able to create their own virtual device and an
interface for Google Assistant to access that device (i.e., unlike Nest v1, which has a general-purpose
public API that can be used to access multiple other devices and resources). Thus, Nest v2 violates
P1, making it infeasible to automatically test for gaps in access control enforcement (A1).
Further, Nest v2 does not require developers to write custom permission descriptions or prompt

the user before using a permission, as permissions are acquired by Google Assistant when integrating
the device with the platform. Hence, Nest v2 loses the context of requiring/using permissions,
violates P2 and P3, and invalidates A2 and A3. Moreover, routines will only be created and
managed via Google Assistant, which means that no repositories of routines will be available,
requiring researchers to analyze potential routines (e.g., from integrations described on the Works
with Google Assistant website). Hence, P4 is partially satisfied, and it may be somewhat feasible
to perform A4, although incredibly difficult to do so with completeness or at scale. Finally, since
the Google Home mobile app is the only official way for the user to access the platform, we do
not foresee the development of third-party mobile apps that integrate with Nest v2. However, it is
common for vendors to provide mobile apps as alternate mediums to control their devices, and
since some vendors are being tightly integrated to Nest v2 after a thorough review process 5, Nest
v2 may potentially partially satisfy P5, and hence, A5.

9.2.2 SmartThings Classic and v2. A particularly interesting aspect of SmartThings is that it
allows developers to publish Groovy-based IoT apps (i.e., called SmartApps) in a platform-provided
market. This existing SmartThings “Classic” platform is now being phased out in favor of the

4https://blog.google/products/google-nest/helpful-home/
5https://www.blog.google/products/google-nest/updates-works-with-nest/

ACM Transactions on Cyber-Physical Systems, Vol. - Special Issue on Security and Privacy for Internet of Things Systems,
No. #, Article ###. Publication date: July 2019.



new SmartThings v2 platform6 launched on March 18, 2018 that drastically deviates from this
characteristic, i.e., SmartThings v2 has eliminated Groovy-based SmartApps. Instead, SmartApps
are now manifested as Web hook endpoints [43] or AWS Lambda functions [42] in SmartThings v2,
which integrate with SmartThings via its API.
Results of our Feasibility Analysis for SmartThings Classic and SmartThings v2: Our analy-
sis confirms that all properties except P2 and P3 hold for SmartThings Classic (i.e., as SmartThings
does not mandate developer-specified permission descriptions or prompts). Hence, a majority of
our analyses are feasible on the classic version (i.e.,A1, A4, and A5). However, the changes in
SmartThings v2 make A4 and A5 partially infeasible. Specifically, P4 is affected due to the lack of
centrally published and hosted SmartApps in SmartThings v2, i.e., as SmartApps will be reduced to
remote endpoints whose code is unavailable for analysis, which will leave researchers with only
text descriptions of routines on vendor websites, rendering A4 partially feasible. Similarly, while
third-party mobile app integration is technically possible, it is currently unavailable, which means
that P5 does not fully hold, and performing A5 would be infeasible at least in the near future.

9.2.3 HomeKit. Apple HomeKit [20] is a proprietary framework that allows interaction among
different devices (called accessories) in the home through iOS apps. Once the accessories are
integrated into the HomeKit framework, users can remotely control or automate them via iOS apps.
Results of Feasibility Analysis for HomeKit:While HomeKit is a closed platform similar to
Nest v2, it does provide hobbyists with API-support to explore/test the platform. This access would
allow researchers to create their own accessories (i.e., devices), while the typical iOS testing and
development tools may be used for analyzing the permission enforcement, and access to these
devices (i.e., fully satisfying P1 and facilitating A1). Further, developers are required to specify
“usage descriptions”, in a “NSHomeKitUsageDescription” field, which is why P2 holds, facilitating
A2 (however, A3 is not applicable as there are no mandated prompts). Routines are not available
in one place, but can be acquired by analyzing the Home app, i.e., P4 partially holds, and hence A4
is partially feasible. Finally, as mobile apps are integral to this model, A5 is feasible.

9.2.4 Home Assistant. Home Assistant [18] is an open-source framework for smart home manage-
ment. Unlike other proprietary platforms where the users need to rely on the server for communi-
cation between devices, Home Assistant gives an option of hosting the server locally.
Results of Feasibility Analysis for Home Assistant: Home Assistant’s open nature provides
valuable opportunities for analysis. For instance, it is open source, allowing researchers to build it
locally and automate the creation of the permission map as we discovered in our initial exploration
(i.e.,A1 is feasible). Note that Home Assistant does not enforce device-level permissions, but instead,
enforces access control among multiple users (i.e., hence, the scope of the permission map changes).
Publicly available automations [19] satisfy P4 and facilitate A4. Similarly, third-party apps for
Home Assistant are not numerous, but exist, satisfying P5 and facilitating A5. However, Home
Assistant does not exhibit P2 and P3 due to the uniqueness of its permission model, i.e., the user
can directly define centrally managed groups that have a specific access to certain smart home
resources, which precludes permission descriptions or prompts, making A2 and A3 inapplicable.

9.2.5 OpenHAB. OpenHAB is an open-source framework that users can host locally or on the
OpenHAB cloud service. Devices (i.e., things) are integrated with OpenHAB via bindings (i.e.,
similar to device handlers in SmartThings). Users can then leverage these integrated things to
create routines (called rules). While OpenHAB provides bindings for various communication
protocols, there is no permission system in place to connect the third-party service.

6https://blog.smartthings.com/news/smartthings-updates/the-new-smartthings-app-is-here/
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Results of Feasibility Analysis for OpenHAB: OpenHab is similar to Home Assistant in that
it is a highly customizable open platform, but unlike Home Assistant, there is no permission
enforcement system in place. Thus, P1→P3 do not hold for OpenHAB, and A1→A3 are not
applicable. However, as a significant number of OpenHAB rules (i.e., routines) can be found in
dedicated forums,7 P4 holds, and A4 is feasible. Similarly, because there are third party apps that
interface with this platform (P5) an app-based analysis of this platform (A5) is possible.

9.3 The challenge for future security research
Our feasibility evaluation reveals several interesting aspects of the smart home ecosystem. For
example, some platforms such as Apple HomeKit, Home Assistant, and OpenHAB do not implement
permissions at the granularity of a device (i.e., instead, only implement multi-user separation, which
is further absent in OpenHAB), a coarse-grained model that would be trivial to exploit once an
authorization token is stolen (i.e., even without a transitive exploit such as a lateral privilege
escalation). More importantly, it demonstrates alarming trends for future research in this area. That
is, none of the platforms are amenable to all of A1→A5, even partially (i.e., except Nest v1 which
was the initial focus of this paper). More importantly, we see that as platforms evolve, they become
less open and transparent to introspection by security researchers. For instance, SmartApps in
SmartThings v2 are hidden behind endpoints on the Web, and no longer as open to scrutiny as
those in SmartThings v1. Similarly, Nest v2 abstracts platform API, routines, and most functionality
behind the Google Assistant API, which is not public and only available to certain certified partners.
This is in complete contrast with the publicly accessible API of Nest v1 that enabled the analysis
in this paper. To continue investigating the security of smart home platforms, researchers must
overcome the overwhelming challenge of (1) identifying and mining novel sources of routines
and apps at scale, and (2) developing alternate methods of accessing platform APIs, which
includes engaging platform vendors to acquire official API access.

10 RELATEDWORK
Smart home platforms are an extension of the new modern OS paradigm, the security problems in
smart home platforms are similar to prior modern OSes (e.g., application over-privilege, incorrect
enforcement). As a result, some of the same techniques may be applied in detecting such problems,
e.g., our work uses automated testing to derive permission maps and compares the maps to the
platform documentation, in amanner similar to Felt et al.’s seminal evaluation of Android permission
enforcement [10]. We also leverage lessons from prior work on SSL misuse [9, 35, 40, 46] to perform
the SSL Analysis (Section 6.2) and the MiTM exploit (Section 7). The lack of transitivity in access
control that we observe is similar to prior observations on Android [5, 11, 24, 25]; however, the
implications are different in the smart home. The novelty of this paper is rooted in using lessons
learned from prior research in modern OS and application security to identify problems in popular
but under-evaluated platforms such as Nest and Hue, and moreover, in demonstrating the potential
misuse of home automation routines for performing lateral privilege escalation.

While prior work analyzes IoT apps to study the potential for adversarial misuse [7], this paper
is the first to demonstrate an end-to-end lateral privilege escalation attack involving routines
(Section 7). This focus on adversarial misuse and a demonstrated end-to-end attack distinguishes
this paper from closely-related work in smart home security, such as the security evaluation of the
SmartThings platform and its apps by Fernandez et al. [12], and systems such as IoTSAN [33] and
the Soteria [4] that detect the side-effects of the concurrent execution of Samsung’s SmartApps.
Aside from our 11 novel findings (F1→F11), the value of this paper is in its holistic evaluation of

7https://community.openhab.org/c/tutorials-examples
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home automation security, i.e., as we study the permission text artifacts, product review-based
defenses, and the detrimental impact of platform evolution on the feasibility of analysis.

In a similar vein as this work, prior work by Surbatovich et al. [48] has analyzed the security and
privacy risks associated with IFTTT recipes, which are trigger-action programs similar to routines.
The key difference is that Surbatovich et al. examines the safety of individual recipes, while our
work explores routines that may be safe on their own (e.g., when home, turn off the Nest Cam), but
which may be used as gadgets by attackers to attack a high-integrity device from a low-integrity
device. Our holistic analysis is complementary to such per-routine analysis, as well as per-device
security analysis performed in prior work, such as Sukhvir et al.’s attack on the communication
and authentication protocols in Hue and Wemo [34], or Sivaraman et al.’s attack on the home’s
firewall using a malicious device on the network [41]).

Finally, prior work has proposed novel access control enhancements for smart home platforms,
such as provenance systems (e.g., ProvThings [52]), systems such as ContexIoT [22] that enable
highly-contextual runtime prompts, or systems such as SmartAuth [51] that analyze the consistency
of an app’s text description with its code, which may alleviate the concerns raised in this paper.
However, such systems will also become exceedingly difficult to design, evaluate, and deploy, due
to the evolutionary trends in smart home platforms (Section 9).

11 LESSONS AND CONCLUSION
Our findings (F1)→(F11) demonstrate numerous gaps in the security of DSB platforms. We now
distill the core lessons from our security findings from Nest and Hue, as well as the feasibility
analysis with six additional platforms.
Lesson 1 : Seamless automation must be accompanied by strong integrity guarantees. It is important
to note that the attack described in Section 7 can not be addressed by reducing overprivilege or via
product reviews, since none of the components of the attack are overprivileged (i.e., including TP
Link Kasa), and our findings demonstrate that the Nest product review is insufficient (F5→F9). The
attack was possible due to the integrity-agnostic execution of routines in Nest (F4). To mitigate such
attacks, platforms need information flow control (IFC) enforcement that ensures strong integrity
guarantees [3], and future work may explore the complex challenges of (1) specifying integrity
labels for diverse devices and (2) enforcing integrity constraints without sacrificing automation.
Lesson 2: Nest Product Reviews would benefit from at least light-weight static analysis. Our findings
demonstrate numerous violations of the Nest design policies that should have been discovered
during the product review. Moreover, the review guidelines also state that products that do not
securely transmit tokens will be rejected [28], but our simple static analysis using MalloDroid
discovered numerous SSL vulnerabilities in Nest apps (F10), of which one can be exploited (Section 7).
We recommend the integration of light-weight tools such as MalloDroid in the review process.
Lesson 3: The security of the smart home indirectly depends on the smart phone (apps). Smartphone
apps have been known to be susceptible to SSL misuse [9], among other security issues (e.g.,
unprotected interfaces [5]). Thus, unprotected smartphone clients for smart home devices may
enable the attacker to gain access to the smart home, and launch further attacks, as demonstrated
in Section 7. Ensuring the security of smart phone apps is a hard problem, but future work may
triage smartphone apps for security analyses based on the volume of smart home devices/platforms
they integrate with, thereby, improving the apps that offer the widest possible attack surface.
Lesson 4: Popular but simpler platforms need urgent attention. The startling gaps in the access
control of Hue demonstrate that the access control of other simple (i.e., homogeneous) platforms
may benefit from a similar holistic security analysis (F2, F3, F11).
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Lesson 5: New Analysis Methods are required as smart home platforms become more restrictive to
integrations. Our feasibility analysis in Section 9 demonstrates how popular smart home platforms
are becoming less transparent, and more amenable to security analysis. While this tighter control
can help to alleviate certain security problems such as public API misuse, or side-stepping review
protocols, it also shifts more control into the hands of the platforms, making them more difficult
to examine. Thus, new methods of analysis that work within the boundaries of modern platform
restrictions are needed. For instance, acquiring and studying the security implications of the
increasingly common user-driven routines (i.e., those created by users through interactive platform-
provided UIs) offers a potentially viable alternative to studying the developer-provided IoT apps.
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