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Mobile application security has been a major area of focus for security research over the course of the

last decade. Numerous application analysis tools have been proposed in response to malicious, curious,

or vulnerable apps. However, existing tools, and specifically, static analysis tools, trade soundness of the

analysis for precision and performance and are hence soundy. Unfortunately, the specific unsound choices or

flaws in the design of these tools is often not known or well-documented, leading to misplaced confidence

among researchers, developers, and users. This paper describes the Mutation-based Soundness Evaluation (`SE)

framework, which systematically evaluates Android static analysis tools to discover, document, and fix flaws,

by leveraging the well-founded practice of mutation analysis. We implemented `SE and applied it to a set of

prominent Android static analysis tools that detect private data leaks in apps. In a study conducted previously,

we used `SE to discover 13 previously undocumented flaws in FlowDroid, one of the most prominent data

leak detectors for Android apps. Moreover, we discovered that flaws also propagated to other tools that build

upon the design or implementation of FlowDroid or its components. This paper substantially extends our

`SE framework and offers an new in-depth analysis of two more major tools in our 2020 study, we find 12

new, undocumented flaws and demonstrate that all 25 flaws are found in more than one tool, regardless

of any inheritance-relation among the tools. Our results motivate the need for systematic discovery and

documentation of unsound choices in soundy tools and demonstrate the opportunities in leveraging mutation

testing in achieving this goal.
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1 INTRODUCTION
Mobile devices such as smartphones and tablets have become the fabric of our consumer computing

ecosystems; by the year 2020, more than 80% of the world’s adult population is projected to own a
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smartphone [29]. This popularity of mobile devices is driven by the millions of diverse, feature-rich,

third-party applications or “apps” they support. However, in fulfilling their functionality, apps often

require access to security and privacy-sensitive resources on the device (e.g. GPS location, security
settings). Applications can neither be trusted to be well-written or benign, and to prevent misuse

of such access through malicious or vulnerable apps [30, 34, 43, 64, 90, 97, 110], it is imperative to

understand the challenges in securing mobile apps.

Security analysis of third-party apps has been one of the dominant areas of smartphone security

research in the last decade, resulting in tools and frameworks with diverse security goals. For

instance, prior work has designed tools to identify malicious behavior in apps [5, 33, 111], discover

private data leaks [6, 8, 32, 42], detect vulnerable application interfaces [16, 37, 57, 67], identify

flaws in the use of cryptographic primitives [30, 34, 97], and define sandbox policies for third-party

apps [46, 51]. To protect users from malicious or vulnerable apps, it is imperative to assess the

challenges and pitfalls of existing tools and techniques. However, it is unclear whether existing
security tools are sufficiently robust to expose particularly well-hidden unwanted behaviors.
Our work is motivated by the pressing need to discover the limitations of application analysis

techniques for Android. Existing application analysis techniques, specifically those that employ

static analysis, must in practice trade soundness for precision, as there is an inherent conflict

between the two properties. A sound analysis requires the technique to over-approximate (i.e.
consider instances of unwanted behavior that may not execute in reality), which in turn deteriorates

precision. This trade-off has practical implications on the security provided by static analysis

tools. That is, in theory, static analysis is expected to be sound, yet, in practice, these tools must

purposefully make unsound choices to achieve a feasible analysis that has sufficient precision and

performance to scale. For instance, techniques that analyze Java generally do not over-approximate

analysis of certain programming language features, such as reflection, for practical reasons (e.g.
Soot [101], FlowDroid [6]). Although this particular case is well-known and documented, many

such unsound design choices are neither well-documented, nor known to researchers outside a

small community of experts.

Security experts have described such tools as soundy, i.e. having a core set of sound design

choices, in addition to certain practical assumptions that sacrifice soundness for precision [66].

Although soundness is an elusive ideal, soundy tools certainly seem to be a practical choice: but only
if the unsound choices are known, necessary, and properly documented. However, the present state
of soundy static analysis techniques is dire, as unsound choices (1) may not be documented, and

unknown to non-experts, (2) may not even be known to tool designers (i.e. implicit assumptions),

and (3) may propagate into future research. The soundiness manifesto describes the misplaced

confidence generated by the insufficient study and documentation of soundy tools, in the specific

context of language features [66]. Motivated by the manifesto, we leverage soundiness at the
general, conceptual level of design choices, and attempt to resolve the status quo of soundy tools

by making them more secure as well as transparent.

We describe the Mutation-based Soundness Evaluation (`SE, read as “muse”) framework that

enables systematic security evaluation of Android static analysis tools to discover unsound design

assumptions, leading to their documentation, as well as improvements in the tools themselves. In

particular, this manuscript describes our extension of our original `SE paper published in USENIX’18

in August [11]. `SE leverages the practice of mutation analysis from the software engineering

(SE) domain [4, 19, 21, 25, 44, 68, 81, 82, 86, 109], and specifically, more recent advancements in

mutating Android apps [63]. In doing so, `SE adapts a well-founded practice from SE to security,

by making useful changes to contextualize it to evaluate security tools.

`SE creates security operators, which reflect the security goals of the tools being analyzed (e.g.
data leak or SSL vulnerability detection). These security operators are seeded, i.e. inserted into
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one or more Android apps, as guided by a mutation scheme. This seeding results in the creation of

multiple mutants (i.e. code that represents the target unwanted behavior) within the app. Finally, the
mutated application is analyzed using the security tool being evaluated, and the undetected mutants

are then subjected to a deeper analysis. We propose a semi-automated methodology to analyze the

uncaught mutants, resolve them to flaws in the tool, and confirm the flaws experimentally.

We demonstrate the effectiveness of our approach by evaluating static analysis research tools

that detect data leaks in Android apps. Based on our analysis of the discovered flaws, we provide

immediate patches that address one flaw, and identify classes of design-level flaws that may be

hard to address without significant research effort. Further, we perform a flaw propagation study

that checks for the presence of these flaws among seven data leak detectors.

The general contributions of this paper can be summarized as follows:

• We introduce the novel paradigm of Mutation-based Soundness Evaluation (i.e. `SE), which
provides a systematic methodology for discovering flaws in static analysis tools for Android,

leveraging the well-understood practice of mutation analysis. We adapt mutation analysis for

security evaluation and design the abstractions of security operators and mutation schemes.
• We design and implement the `SE framework for evaluating Android static analysis tools. `SE

adapts to the security goals of a tool being evaluated and allows the detection of unknown or

undocumented flaws.

• We demonstrate the effectiveness of `SE by evaluating several widely used Android security tools
that detect private data leaks in Android apps. `SE detects undocumented flaws, and demon-

strates their propagation. Our analysis leads to the documentation of unsound assumptions

at the design-level, and immediate security patches for an easily fixable but evasive flaw.

We published an earlier version of this work in USENIX’18 [11] where we analyzed FlowDroid [6]

using `SE and discovered 13 previously undocumented flaws. The current version of this study

substantially extends upon the previous work, in the following manner:

• Design and Implementation of `SE: We designed a new scope-based mutation place-

ment approach, in addition to the mutation schemes originally explored in the USENIX’18

paper [11]. Further, we refined the implementation of the reachability-based scheme by

integrating class declaration-level placement. Moreover, this extension includes a discussion

on leveraging the abstractions invented in `SE for evaluating tools with security goals other

than data leak detection, such as the detection of cryptographic-API misuse vulnerabilities.

Such a discussion on the general applicability of `SE’s abstractions was not present in our

USENIX’18 paper. Finally, we enhance `SE’s execution engine as a part of this extension,

thereby improving its accuracy in terms of associating execution traces with mutants.

• Multiplicative improvement in mutants generated: In the USENIX’18 paper [11], 7

Android apps were used as base applications for mutation, to produce 7,584 compilable

mutants. In this extension, we added 8 new apps, resulting in a total of 15 real-world, open-

source Android apps used for mutation. We were able to seed 30,117 compilable mutants into

these 8 new apps, of which 4,385 were executable, and were used for evaluating additional

data leak detectors (see next). More importantly, to gauge the impact of our design and

implementation improvements on `SE’s ability to generate compilable mutants, we also

mutated the 7 original apps, which resulted in 24,819 mutants, i.e., 17,235 more mutants (a

2.27𝑥 increase in compilable mutants) over the USENIX’18 study.
• Evaluation of the Effectiveness of Mutation Schemes: In this extension, we perform a

data-driven evaluation of our implemented mutation schemes, across two primary directions:

(1) their ability to create executable mutants, and (2) their ability to create mutants that may
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lead to the discovery of flaws. Our analysis, and the resultant insights regarding schemes is

novel, as no such evaluation was performed in our USENIX’18 paper [11].

• Significant additional extrinsic evaluation with an in-depth analysis of Argus and
HornDroid: We studied FlowDroid in-depth in our USENIX’18 paper, which formed the
core of the extrinsic evaluation. In this study, we effectively tripled our extrinsic evaluation
by performing an in-depth soundness evaluation of two additional state-of-the-art data

leak detecting static analysis approaches for Android, namely Argus (previously known as

AmanDroid) [38] and HornDroid [14]. We used the newly generated set of 4,385 executable

mutants generated from the 8 new base apps to evaluate Argus and HornDroid.

• New Findings: Our extended analysis led to significant new findings over our USENIX’18

study [11], which can be summarized into the following four points. (1)Newflaws.We found

12 novel flaws in Argus and HornDroid, in addition to the 13 flaws discovered in FlowDroid

in our USENIX’18 study [11], which brings the total number of discovered flaws to 25. (2)
New flaw class. We discovered a new flaw class, aside from the four classes discussed in the

USENIX’18 version, due to a distinctive and novel pattern exhibited by certain flaws, i.e., a
fundamentally flawed analysis of critical Android lifecycle methods that are present in all

applications (e.g., onCreate). (3) New insight on propagation. Furthermore, we discovered

a new insight in terms of how flaws propagate across tools, relative to the USENIX’18 paper. That
is, in the USENIX paper we found that flaws generally propagate when a direct inheritance

relationship is present among two tools (i.e., directly relying on the code base), but also

observed that the flaws did not propagate to tools that did not have a direct relationship, but

were simply built for similar design goals. However, in this work, on studying the propagation

of flaws with four additional tools (i.e., across total 7 tools), we discovered that every single

flaw was present in at least one other tool, which means that flaws propagate across tools

purely because of the shared design goal, even without any direct inheritance relationship.

Such propagation based purely on the design goal was speculated in the USENIX’18 paper, but

was not evident, as it is in this work. (4) New insight on re-emergence of flaws. Finally,
we found that flaws that are fixed after reporting, can re-emerge in future updates of a tool.
Our findings demonstrate that soundness issues can be introduced at any point in tools’

lifecycles, which further necessitates continuous evaluation with `SE.

We have released the `SE framework, the security operators and mutation schemes constructed

for evaluating data leak detectors, as well as all of the experimental data, to facilitate the repro-

ducibility of our results, as well as to enable security researchers, tool designers, and analysts

uncover undocumented flaws and unsound choices in soundy security tools [100].

2 MOTIVATION AND BACKGROUND
This work is motivated by the pressing need to help researchers and practitioners identify instances

of unsound assumptions or design decisions in their static analysis tools, thereby extending the
sound core of their soundy techniques. That is, security tools may already have a core set of sound

design decisions (i.e. the sound core) and may claim soundness based on those decisions. The

soundiness manifesto [66] defines the sound core in terms of specific language features, whereas

we use the term in a more abstract manner to refer to the design goals of the tool. Systematically

identifying unsound decisions may allow researchers to resolve flaws and help extend the sound

core of their tools.

Moreover, research papers and tool documentations indeed do not articulate many of the unsound

assumptions and design choices that lie outside their sound core, aside from some well-known

cases (e.g. choosing not to handle reflection, race conditions), as confirmed by our results (Section 6).
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In addition, there is a chance that developers of these techniques may be unaware of some implicit

assumptions/flaws due to a host of reasons: e.g. because the assumption was inherited from prior

research or a certain aspect of Android was not modeled correctly. Therefore, our objective is to

discover instances of such hidden assumptions and design flaws that affect the security claims

made by tools, document them explicitly, and possibly, help developers mend existing artifacts.

2.1 Motivating Example
Consider the following motivating example of a prominent static analysis tool, FlowDroid [6]:

FlowDroid is a highly popular static analysis framework for detecting private data leaks in Android

apps by performing a data flow analysis. Some of the limitations of FlowDroid are well-known and

stated in the paper [6]; e.g. FlowDroid does not support reflection, like most static analyses for Java.

However, through a manual but systematic, preliminary, analysis of FlowDroid, we discovered a

security limitation that is not well-known or accounted for in the paper, and hence affects guarantees

provided by the tool’s analysis. We discovered that FlowDroid (i.e. v1.5, which was latest at the

time of our preliminary analysis in October 2017) does not support “Android fragments” [3], which

are app modules that are widely used in most Android apps (i.e. in more than 90% of the top 240

Android apps per category on Google Play, as demonstrated in our original USENIX’18 paper [11]).

This flaw renders any security analysis of general Android apps using FlowDroid unsound, due

to the high likelihood of fragment use, even when the app developers may be cooperative and

non-malicious. Further, FlowDroid v2.0, which was released on 10/10/2017 [98], claims to address

fragments, but failed to detect our exploit.
On investigating further, we found that FlowDroid v1.5 was extended or used by at least 13

research tools [1, 8, 55, 58, 59, 61, 65, 76, 79, 89, 92, 95, 108], none of which acknowledge or address

this limitation in modeling fragments. This leads us to conclude that this significant flaw not only

persists in FlowDroid, but may have additionally propagated to the tools that inherit it directly (i.e.,
by inheriting its code), or indirectly (i.e., by adhering to similar design principles/goals). Our flaw

propagation study in Section 9 confirms this conjecture for inheritors of FlowDroid, as well as the

two other data leak detectors that we evaluate in-depth, i.e., Argus [38] and Horndroid [14].

We reported the flaws to the authors of FlowDroid, and created two patches to fix it. Our patches

were confirmed to work on FlowDroid v2.0 built from source, and were accepted into FlowDroid’s

repository [99] in December 2017. Thus, we were able to discover and fix an undocumented flaw that

significantly affected FlowDroid’s soundness claims, thereby expanding its sound core. However,

we have confirmed that FlowDroid v2.5 [98] still fails to detect leaks in fragments, and are working

with developers to resolve this issue.

Through this example, we demonstrate that unsound assumptions in security-focused static

analysis tools for Android are not only detrimental to the validity of their own analysis, but may

inadvertently propagate to future research. Thus, identifying these unsound assumptions is not

only beneficial for making the user of the analysis aware of its true limits, but in addition for the

research community in general. As of today, aside from a handful of manually curated testing

tool-kits (e.g., DroidBench [6]) with hard-coded (but useful) checks, to the best of our knowledge,

there has been no prior effort at methodologically discovering problems related to soundiness in
Android static analysis tools and frameworks. This paper is motivated by the need to systematically
identify and resolve the unsound assumptions in security-related static analysis tools.

2.2 Background on Mutation Analysis
Mutation analysis has a strong foundation in the field of SE, and is typically used as a test adequacy

criterion, measuring the effectiveness of a set of test cases [81]. Faulty programs are created

by applying transformation rules, called mutation operators to a given program. The larger the
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Fig. 1. `SE tests a static analysis tool on a set of mutated Android apps and analyzes uncaught mutants to
discover and/or fix flaws.

number of faulty programs or mutants detected by a test suite, the higher the effectiveness of

that particular suite. Since its inception [19, 44], mutation testing has seen striking advancements

related to the design and development of advanced operators. Research related to development of

mutation operators has traditionally attempted to adapt operators for a particular target domain,

such as the web [86], data-heavy applications [4, 25, 109], or GUI-centric applications [82]. Recently,

mutation analysis has been applied to measure the effectiveness of test suites for both functional

and non-functional requirements of Android apps [20, 50, 63].

This paper builds upon SE concepts of mutation analysis and adapts them to a security context.

Our methodology does not simply use the traditional mutation analysis, but rather redefines it to
effectively improve security-focused static analysis tools, as described in Sections 4 and 5.

3 `SE
We describe `SE, a semi-automated framework for systematically evaluating Android static anal-

ysis tools that adapts the process of mutation analysis commonly used to evaluate software test

suites [81]. That is, we aim to help discover concrete instances of flawed security design decisions

made by static analysis tools, by exposing them to methodologically mutated applications. We

envision two primary benefits from `SE: short-term benefits related to straightforwardly fixable

flaws that may be patched immediately, and long-term benefits related to the continuous documen-

tation of assumptions and flaws, even those that may be hard to resolve. This section provides an

overview of `SE (Figure 1) and its design goals.

As shown in Figure 1, we take an Android static analysis tool to be evaluated (e.g., FlowDroid [6]
or MalloDroid [34]) as input. `SE executes the tool on mutants, i.e., apps to which security operators
(i.e., security-related mutation operators) are applied, as per a mutation scheme, which governs the

placement of code transformations described by operators in the app (i.e., thus generating mutants).

The security operators represent anomalies that the static analysis tools are expected to detect, and

hence, are closely tied to the security goal of the tool. The uncaught mutants indicate flaws in the

tool, and analyzing them leads to the broader discovery and awareness of the unsound assumptions

of the tools, eventually facilitating security-improvements.

Design Goals:Measuring the security provided by a system is a difficult problem; however, we

may be able to better predict failures if the assumptions made by the system are known in advance.

Similarly, although soundness may be a distant ideal for security tools, we assert that it should be

feasible to articulate the boundaries of a tool’s sound core. Knowing these boundaries would be

immensely useful for analysts who use security tools, for developers looking for ways to improve

tools, as well as for end users who benefit from the security analyses provided by such tools. To

this end, we design `SE to provide an effective foundation for evaluating Android security tools.

Our design of `SE is guided by the following goals:
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A] FlowDroid (expressing data leaks)  
1)  Export location using any network API
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...

B] MalloDroid (detecting vulnerable SSL use)
1)  Export any data using vulnerable TrustManager
2)  Export any data using vulnerable SocketFactory 
...

Fig. 3. A generic “network export” security opera-
tor, and its more fine-grained instantiations in the
context of FlowDroid [6] and MalloDroid [34].

G1 Contextualized security operators. Android security tools have diverse purposes and may

claim various security guarantees. Security operators must be instantiated in a way that is

sensitive to the context or purpose (e.g., data leak identification) of the tool being evaluated.

G2 Android-focused mutation schemes. Android’s security challenges are notably unique,

and hence require a diverse array of novel security analyses. Thus, the strategies for defining

mutation schemes, i.e., the placement of the target, unwanted behavior in the app, must

consider Android’s abstractions and application model for effectiveness.

G3 Minimize manual-effort during analysis. Although `SE is certainly more feasible than

manual analysis, we intend to significantly reduce the manual effort spent on evaluating

undetected mutants. Thus, our goal is to dynamically filter inconsequential mutants, and to

develop a systematic methodology for resolving undetected mutants to flaws.

G4 Minimize overhead. We expect `SE to be used by security researchers as well as tool users

and developers. Hence, we must ensure that `SE is efficient so as to promote a wide-scale

deployment and community-based use of `SE.

Threat Model: The design goals delineated above are ultimately meant to address a specific threats

that arise from static analyses that are thought to be sound – but are not actually not sound – leading
to undiscovered security vulnerabilities in Android apps. `SE is designed to help security researchers

evaluate tools that detect vulnerabilities (e.g. SSL misuse), and more importantly, tools that detect
malicious or suspicious behavior (e.g. data leaks). Thus, the security operators andmutation schemes

defined in this paper are of an adversarial nature. That is, behavior like “data leaks” is intentionally

malicious/curious, and generally not attributed to accidental vulnerabilities. Therefore, to evaluate

the soundness of existing tools that detect such behavior, `SE has to develop mutants that mimic

such adversarial behavior as well, by defining mutation schemes of an adversarial nature. This is

the key difference between `SE and prior work on fault/vulnerability injection (e.g., LAVA [27])

that assumes the mutated program to be benign.

4 DESIGN
Figure 2 provides a conceptual description of the process followed by `SE, which consists of three

main steps. In Step 1, we specify the security operators and mutation schemes that are relevant to

the security goals of the tool being evaluated (e.g. data leak detection), as well as certain unique

abstractions of Android that separately motivate this analysis. In Step 2, we mutate one or more

Android apps using the security operators and defined mutation schemes using a Mutation Engine
(ME). After this step each app is said to contain one or more mutants. To maximize effectiveness,

mutation schemes in `SE stipulate that mutants should be systematically injected into all potential

locations in code where operators can be instantiated. In order to limit the effort required for

manual analysis due to potentially large numbers of mutants, we first filter out the non-executing

mutants in the Android app(s) using a dynamic Execution Engine (EE) (Section 5). In Step 3, we
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1 Inject:
2 String dataLeak ## = java.util.Calendar.getInstance ().getTimeZone ().getDisplayName ();
3 android.util.Log.d("leak -##", dataLeak ##);

Listing 1. Security operator that injects a data leak from the Calendar API access to the device log.

apply the security tool under investigation to analyze the mutated app, leading it to detect some or

all of the mutants as anomalies. We perform a methodological manual analysis of the undetected

mutants, which may lead to documentation of flaws, and software patches. Note that tools sharing

a security goal (e.g. FlowDroid [6], Argus [38], HornDroid [14] and BlueSeal [94] all detect data

leaks) can be analyzed using the same security operators and mutation schemes, and hence the

mutated apps, significantly reducing the overall cost of operating `SE (Goal G4).
This section describes the design of `SE, including the additional contributions made in this

extension of our USENIX’18 study [11]. Moreover, in Section 4.4, we describe a general approach

for leveraging the abstractions introduced in `SE to evaluate security tools built for goals other

than data leak detection (e.g., cryptographic API misuse detection).

4.1 Security Operators
A security operator is a description of the unwanted behavior that the security tool being analyzed

aims to detect. When designing security operators, we are faced with an important question: what
do we want to express? Specifically, the operator might be too coarse or fine-grained; finding the

correct granularity is the key. For instance, defining operators specific to the implementations of

individual tools may not be scalable. On the contrary, defining a generic security operator for all

the tools may be too simplistic to be effective. Consider the following example:

Figure 3 describes the limitation of using a generic security operator that describes code which

“exports data to the network”. Depending on the tool being evaluated, we may need a unique,

fine-grained, specification of this operator. For example, for evaluating FlowDroid [6], we may

need to express the specific types of private data that can be exported via any of the network APIs,

i.e. the data portion of the operator is more important than what network API is used. However, for

evaluating a tool that detects vulnerable SSL connections (e.g. CryptoLint [30]), we may want to

express the use of vulnerable SSL APIs (i.e. of SSL classes that can be overridden, such as a custom

TrustManager that trusts all certificates) without much concern for what data is exported. That is,

the requirements are practically orthogonal for these two use cases, rendering a generic operator

useless, whereas precisely designing tool-specific operators may not scale.

In `SE, we take a balanced approach to solve this problem: instead of tying a security operator to

a specific tool, we define it in terms of the security goal of the concerned tool (GoalG1). Because the
security goal influences the properties exhibited by a security analysis, security operators designed

with a particular goal in consideration would apply to all the tools that claim to have that security

goal, hence making them feasible and scalable to design. For instance, a security operator that

reads information from a private source (e.g. IMEI, location) and exports it to a public sink (e.g. the
device log, storage) would be appropriate to use for all the tools that claim to detect private data

leaks (e.g. Argus [38], HornDroid [14], BlueSeal [94]) (e.g., see Listing 1 for one such implemented

operator). Moreover, security operators generalize to other security goals as well; a simple operator

for evaluating tools that detect vulnerable SSL use (e.g. MalloDroid) could add a TrustManager
with a vulnerable isServerTrusted method that returns true.

To derive security operators at the granularity of the security goal, we must examine the claims

made by existing tools; i.e. security tools must certainly detect the unwanted behavior that they

claim to detect, unless affected by some unsound design choice that hinders detection. We inspect

the following sources to precisely identify the security flaws considered by tools:
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Evaluation of Android Security using Mutation 1:9

1) Research Papers: The tool’s research paper is often the primary source of information about

what unwanted behavior a tool seeks to detect. We inspect the properties and variations of the

unwanted behavior as described in the paper, as well as the examples provided, to formulate security

operator specifications for injecting the unwanted behavior in an app. However, we do not create

operators using the limitations and assumptions already documented in the paper or well-known

in general (e.g. reflection or dynamic code loading), as `SE seeks to find unknown assumptions.

2) Open source tool documentation: Due to space limitations or tool evolution over time,

research papers may not have the most complete or up-to-date information considering what

security flaws a tool can actually address.We used tool documentation available in online appendices

and open source repositories to fill this knowledge gap.

3) Testing toolkits: Manually-curated testing toolkits (e.g. DroidBench [6]) may be available and

may provide examples of baseline operators.

4.2 Mutation Schemes
To enable the security evaluation of static analysis tools, `SE must seed mutations within Android

apps. For this purpose, we define mutation schemes, i.e., the methods for choosing where to apply

security operators to inject mutations within Android apps.

Our design of mutation schemes leverages a number of factors: (1) Android’s unique abstrac-
tions, (2), the intent to over-approximate reachability for coverage, and (3) the security goal

of the tool being analyzed. We design mutation scheme strategies based on these factors (Sec-

tion 4.2.1→Section 4.2.3), and describe them in the context of our running example first described

in Section 2 (but elaborated as follows):

Recall that FlowDroid [6], the target of our analysis in Section 2, detects data leaks in Android

apps. Hence, FlowDroid loosely defines a data leak as a flow from a sensitive source of information to

some sink that exports it. FlowDroid lists all of the sources and sinks within a configurable “Source-

sAndSinks.txt” file in its tool documentation. A simple data leak mutation may be implemented by

using the data leak operator described previously, with a source (e.g., java.util.Calendar.getTimeZone())
and sink (e.g., android.util.Log.d()) from this file.

The strategies described in the rest of this section guide our implementation of four specific
mutation schemes, using which we seed this data leak across target Android applications (see

Section 5 for implementation). In particular, we significantly enhance the goal-based mutation

scheme strategy by introducing scope as a factor, and implement a scope-based mutation-scheme

(Section 5), which further increases the expressiveness of the mutation introduced by `SE.

4.2.1 Mutation Scheme Strategy 1: Leveraging Android Abstractions. The Android platform and

app model support numerous abstractions that pose challenges to static analysis. One commonly

stated example is the absence of a Main method as an entry-point into the app, which compels

static analysis tools to scan for the various entry points, and treat them all similarly to a traditional

Main method [6, 47].

Based on our domain knowledge of Android and its security, we choose the following features

as a starting point in a mutation scheme strategy that models unique aspects of Android, and more

importantly, tests the ability of analysis tools to detect unwanted behavior placed within these

features (Goal G2):
1) Activity and Fragment lifecycle: Android apps are organized into a number of activity com-

ponents, which form the user interface (UI) of the app. The activity lifecycle is controlled via a set of

callbacks, which are executed whenever an app is launched, paused, closed, started, or stopped [24].

In addition, Fragments are UI elements that possess similar callbacks, although they are often

used in a manner secondary to activities. We design our mutation scheme to place mutants within
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1 final Button button = findViewById(R.id.button_id);
2 button.setOnClickListener(new View.OnClickListener () {
3 public void onClick(View v) {
4 // Code here executes on main thread after user presses button
5 }
6 });

Listing 2. Dynamically created onClick callback
1 String dataLeak0 = java.util.Calendar.getInstance ().getTimeZone ().getDisplayName ();
2 String [] leakArRay0 = new String [] {"n/a", dataLeak0 };
3 String dataLeakPath0 = leakArRay0[leakArRay0.length - 1];
4 android.util.Log.d("leak -0", dataLeakPath0);

Listing 3. Complex Path Operator Placement

methods of fragments and activities where applicable, so as to validate a tool’s ability to model the

activity and fragment life-cycles.

2) Callbacks: Because much of Android relies on callbacks triggered by events, these callbacks pose

a significant challenge to traditional static analyses, as their code can be executed asynchronously

in several different potential orders. We place mutants within these asynchronous callbacks to

validate the tools’ ability to soundly model the asynchronous nature of Android. For instance,

consider the example in Listing 2, where the onClick() callback can execute at any point of time.

3) Intent messages: Android apps communicate with one another and listen for system-level

events using Intents, Intent Filters, and Broadcast Receivers [22, 23]. Specifically, Intent Filters

and Broadcast Receivers form another major set of callbacks into the app. Moreover, Broadcast

Receivers can be dynamically registered. Our mutation scheme not only places mutants in the

statically registered callbacks such as those triggered by Intent Filters in the app’s Android Manifest,

but also callbacks dynamically registered within the program, and even within other callbacks, i.e.
recursively. For instance, we generate a dynamically registered broadcast receiver inside another

dynamically registered broadcast receiver, and instantiate the security operator within the inner

broadcast receiver (see Listing 5 in the Appendix for the code).

4) XML resource files: Although Android apps are primarily written in Java, they additionally

include resource files that establish callbacks. Such resource files also allow the developer to register

for callbacks from an action on a UI object (e.g. the onClick event, for callbacks on a button being

touched). As described previously, static analysis tools often list these callbacks on par with the

Main function, i.e. as one of the many entry points into the app. We incorporate these resource

files into our mutation scheme, i.e. mutate them to call our specific callback methods.

4.2.2 Mutation Scheme Strategy 2: Evaluating Reachability. The objective behind this simple,

but important, mutation scheme is to exercise the reachability analysis of the tool being evaluated.

We inject mutants (e.g. data leaks from our example) at the start of every method in the app.

Furthermore, as part of this extended study, we add leaks at the class declaration-level as well.

While the previous schemes add methods to the app (e.g. new callbacks), this scheme simply verifies

if the app successfully models the bare minimum.

4.2.3 Mutation Scheme Strategy 3: Leveraging the Security Goal. Like security operators, mu-

tation schemes may also be designed in a way that accounts for the security goal of the tool being

evaluated (Goal G1). Such schemes may be applied to any tool with a similar objective. In keeping

with our motivating example (Section 2) and our evaluation (Section 6), we develop an example

mutation scheme strategy that can be specifically applied to evaluate data leak detectors. This

strategy can be instantiated in terms of the following three methods of seeding mutants:

1) Taint-based operator placement: This placement methodology tests the tools’ ability to

recognize an asynchronous ordering of callbacks, by placing the source in one callback and the sink
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1 public class ParentClass {
2 String dataLeak = "";
3 int methodA (){
4 android.util.Log.d("leak -0-1", dataLeak);
5 return 1; }
6 class ChildClass{
7 int childMethodA (){
8 dataLeak = java.util.Calendar.getInstance ().getTimeZone ().getDisplayName ();
9 android.util.Log.d("leak -0-0", dataLeak);
10 return 1; }}}

Listing 4. Scope based operator placement at different levels of inheritance.

in another. The execution of the source and sink may be triggered due to the user, and the app

developer (i.e. especially a malicious adversary) may craft the mutation scheme specifically so that

the sources and sinks lie on callbacks that generally execute in sequence. However, this sequence

may not be observable through just static analysis. A simple example is collecting the source data

in the onStart() callback, and leaking it in the onResume() callback. As per the activity lifecycle,

the onResume() callback always executes right after the onStart() callback.
2) Complex-Path operator placement: Our preliminary analysis demonstrated that static anal-

ysis tools may sometimes stop after an arbitrary number of hops when analyzing a call graph, for

performance reasons. This finding motivated the complex-path operator placement. In this scheme,

we make the path between source and sink as complex as possible (i.e. which is ordinarily one line

of code, as seen in Listing 1). That is, the design of this scheme allows the injection of code along

the path from source to sink based on a set of predefined rules. For our evaluation, we instantiate

this scheme with a rule that recreates the String variable saved by the source, by passing each

character of the string into a StringBuilder, then sending the resulting string to the sink as shown

in Listing 3. `SE allows the analyst to dynamically implement such rules, as long as the input and

output are both strings, and the rule complicates the path between them by sending the input

through an arbitrary set of transformations.

3) Scope-based operator placement: This scope-based placement methodology was not defined

in our USENIX’18 paper [11], and is a new addition to `SE as part of this extension. As the name

suggests, `SE can inject code by analyzing scopes based on visibility. For example, as shown in

Listing 4, childMethodA is visible from both ChildClass and ParentClass. Therefore, we declare
a variable dataLeak at the ParentClass, while assigning the leak source at the childMethodA.
Consequently, we insert corresponding sinks in childMethodA andmethodA. Note that this scheme

is not restricted by callbacks and can be useful for different variations of method declarations. As

application developers may arbitrarily organize class scopes, seeding mutants into applications

using this scheme generally results in interesting and often complicated mutant placement, which

further assists in stress-testing security techniques that assume an adversarial threat model (e.g.,

data leak detectors).

In a traditional mutation analysis setting, themutation placement strategywould seek tominimize

the number of non-compilablemutants. However, as our goal is to evaluate the soundness of Android

security tools, we design our mutation scheme to over-approximate. Once the mutated apps are

created, for a feasible analysis, we pass them through a dynamic filter that removes the mutants

that cannot be executed, ensuring that the mutants that each security tool is evaluated against are

all executable i.e., the data leaks can indeed happen in runtime.

Note that althoughmutation schemes using the first two strategies (Section 4.2.1 and Section 4.2.2)

may be generally applied to any type of static analysis tool (e.g. SSL vulnerability and malware

detectors), the third strategy, as the description suggests, will need to be adapted per security

goal (e.g., data leak detection). We elaborate on this point by presenting a general approach for

leveraging our mutation abstractions for other security goals, in Section 4.4.
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Fig. 4. The number of mutants (e.g. data leaks) to analyze drastically reduces at every stage in the process.

4.3 Analysis Feasibility & Methodology
`SE reduces manual effort by filtering out mutants whose security flaws are not verified by dynamic

analysis (Goal G3). As described in Figure 2, for any given mutated app, we use a dynamic filter

(i.e. the Execution Engine (EE), described in Section 5) to purge non-executable leaks. If a mutant

(e.g. a data leak) exists in the mutated app, but is not confirmed as executable by the filter, (i.e., data
does not leak from source to sink), we discard it. For example, data leaks injected in dead code are

filtered out. Thus, when the Android security tools are applied to the mutated apps, only mutants

that were executed by EE are considered.

Furthermore, after the security tools were applied to mutant apps, only undetected mutants are

considered during analyst analysis. The reduction in the number of mutants subject to analysis at

each step of the `SE process is illustrated in Figure 4.

The following methodology is used by an analyst for each undetected mutant after testing a

given security tool to isolate and confirm flaws:

1) Identifying the Source and Sink:During mutant generation, `SE’s ME injects a unique mutant

identifier, as well as the source and sink using util.Log.d statements. Thus, for each undetected

mutant, an analyst simply looks up the unique IDs in the source to derive the source and sink.

2) Performing Leak Call-Chain Analysis: Since the data leaks under analysis went undetected
by a given static analysis tool, this implies that there exists one (or multiple) method call sequences

(i.e., call-chains) invoking the source and sink that could not be modeled by the tool. Thus, a security

analyst inspects the code of a mutated app and identifies the observable call sequences from various

entry points. This is aided by dynamic information from the EE so that an analyst can examine the

order of execution of detected data leaks to infer the propagation of leaks through different call

chains.

3) Synthesizing Minimal Examples: For each of the identified call sequences invoking a given

undetected data leak’s source and sink, an analyst then attempts to synthesize a minimal example

by re-creating the call sequence using only the required Android APIs or method calls from the

mutated app. This info is then inserted into a pre-defined skeleton app project so that it can be

again analyzed by the security tools to confirm a flaw.

4) Validating the Minimal Example: Once the minimal example has been synthesized by the

analyst, it must be validated against the security tool that failed to detect it earlier. If the tool fails

to detect the minimal example, then the process ends with the confirmation of a flaw in the tool. If

the tool is able to detect the examples, the analyst can either iteratively refine the examples, or

discard the mutant, and move on to the next example.

4.4 Leveraging Security Operators and Mutation Schemes for other Security Goals
Our design describes the `SE framework in terms of the security goal of data leak detection, primarily

due to the popularity of the goal, as well as the proliferation of data leak detectors in academic

research. However, `SEmay be applied as a general framework, to evaluate detection techniques that

target other security goals. We briefly describe the generality of `SE, and specifically, its abstractions
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of security operators andmutation schemes for evaluating tools that detect cryptographic-API misuse,
which is the second most prolific cause of vulnerabilities, after data leaks [103]. In this context, `SE

will evaluate tools such as CryptoGuard [88] and CrySL [56], which try to detect misuse of crypto

APIs.

`SE’s abstractions may be naturally leveraged to evaluate crypto-API misuse detectors. To

elaborate, the security operators for evaluating such tools would represent well-known cryptographic
vulnerabilities, such as passing a weak algorithm name as parameter to an encryption related

cryptography API. For example, one operator could be represented by passing insecure parameters

in an API such as Cipher.getInstance(), such as only passing AES as a parameter, which would

initialize an insecure default cipher that use the ECB mode.

Similarly, `SE’s mutation schemes may also be directly leveraged to place such mutations in a

hard-to-detect manner. First, the scheme that evaluates reachability (Section 4.2.2) can be directly

applied, by placing such vulnerable API invocations (i.e., mutations) at as many reachable locations

within the target app as possible. Similarly, the Android-specific scheme-strategies (Section 4.2.1)

can be leveraged to place the vulnerable invocation in commonly used Android abstractions such as

fragments and broadcast receivers. Finally, the security goal-based scheme-strategies (Section 4.2.3)

can be leveraged to evaluate crypto-API misuse detectors as well. For example, we can consider

the parameter passed to the Cipher.getInstance() API, i.e., the AES string, as a source value,

and the API call as the sink, and use the taint-based mutation scheme to distribute these source

and sink values across different Android lifecycle methods, such that they would execute in the

right sequence, but be hard to detect. Similarly, our newly defined scope-based mutation scheme

can be used to inject the source parameter and the API in different program scopes, in a way that

would execute flawlessly at runtime, but would be hard to detect. Other than syntactical changes

required to implement the security operator (i.e., defining new source-sink pairs, but with Cipher

APIs) and adjusting it for mutation using the schemes (i.e., scoping them within required try-catch
block) , no other changes will be required to the framework, for making it applicable for evaluating

crypto-API misuse detectors. We elaborate on the estimated effort required to make these changes

in Section 12.

5 IMPLEMENTATION
This section provides the implementation details of `SE’s components: (1) the ME for mutating

apps, and (2) the EE for exercising and filtering out non-executable mutants. We have made `SE

available to the research community [100], along with all the data and code generated or used.

1. Mutation Engine (ME): The ME allows `SE to automatically mutate apps according to a fixed

set of security operators and mutation schemes. The ME is implemented in Java and extends the

MDroid+mutation framework for Android [63]. More specifically, `SE’s ME implements the seeding

of mutants according to our definedmutation schemes. This required extensions to MDroid+’s imple-

mented static analyses to identify a more diverse array of source code locations (e.g., analyzing the

visibility scope for the scope-based operator placement scheme). MDroid+’s previous implementation

only supported identifying strings and specific API patterns. These additions help to make `SE’s

ME generic, as it could be applied to support additional security operators or mutation schemes in

the future. To achieve these extensions, we designed ME to do the following:

Firstly, the ME derives a mutant injection profile (MIP) of all possible injection points for a given

mutation scheme, security operator, and target app source code. The MIP is derived through one of

two types of analysis: (i) text-based parsing and matching of xml files in the case of app resources;

or (ii) using Abstract Syntax Tree (AST) based analysis for identifying potential injection points

in code. `SE takes a systematic approach toward applying mutants to a target app, and for each

mutant location stipulated by the MIP for a given app, a mutant is seeded. The injection process
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additionally uses either text or AST-based code transformation rules to modify the code or resource

files. In the context of our evaluation, `SE further marks injected mutants in the source code with

log-based indicators that include a unique identifier for each mutant, as well as the source and sink

for the injected leak. This information can be customized for future security operators and exported

as a ledger that tracks mutant data. `SE can be extended to additional security operators and

mutation schemes by adding methods to derive the MIP and perform target code transformations.

Given the time cost in running the studied security-focused static analysis tools on a set of apks,
`SE breaks from the process used by traditional mutation analysis frameworks that seed each

mutant into a separate program version, and seeds all mutants into a single version of a target app.

Finally, the target app is automatically compiled using its build system (e.g., Gradle [49], ant [39])
so that it can be dynamically analyzed by the EE.

2. Mutation Schemes:We implemented four mutation schemes using the strategies outlined in

Section 4.2. First, we implemented the Reachability scheme, using the reachability-based strategy

(Section 4.2.2). Then, we implemented three other schemes, Scope, Taint, and Complex Reachability,
using the security goal-based strategy (Section 4.2.3). Finally, we integrated the Android-specific

mutation scheme strategy (Section 4.2.1) in these four schemes by prioritizing placement into several

abstractions unique to Android (e.g., fragments, receivers, asynchronous task classes). Among these,

the Scope based scheme was not implemented in our prior USENIX’18 paper [11].

3. Execution Engine (EE): To facilitate a feasible manual analysis of the mutants that are unde-

tected by a security analysis tool, `SE uses the EE to dynamically analyze target apps, verifying

whether or not injected mutants can be executed in practice. To further elaborate with respect to

our implementation, an executable mutant represents a data leak from source to sink as observed

through our execution engine. This EE builds upon prior work in automated input generation for

Android apps by adapting the systematic exploration strategies from the CrashScope tool [70, 71]

to explore a target app’s GUI. We made several improvements to CrashScope in order to tailor

the automated app execution to the goal of discovering as many executable mutants as possible.

For instance, CrashScope’s execution strategies were originally intended to uncover crashes in

Android apps and thus included several mechanisms that executed common crash inducing actions

on apps including rotating the screen, and injecting text with special characters. In order to be

used in `SE, we discarded these crash inducing operations, and developed strategies that focused

upon uncovering as many execution states of the app as possible. Additionally, as part of extending

our USENIX’18 paper [11], we made a practical improvement to the manner in which CrashScope

analyzes applications as part of our current study. That is, during initial testing we discovered

that even after uninstalling an application from an Android virtual device used in CrashScope,

certain background services may persist, which can contaminate the runtime mutant execution logs

across applications. We addressed this problem by modifying CrashScope to instantiate a new, clean

Android virtual device for each application analyzed, thereby fully isolating application execution

logs.

We discuss the limitations of the EE in Section 12 (see the Appendix for additional details).

6 EVALUATION OVERVIEW
The primary objective of this evaluation is to measure the effectiveness of `SE at uncovering flaws

in security-focused static analysis tools for Android apps, and to demonstrate the extent of such

flaws. As a case study, we focus our evaluation on the security goal of data leak detection, which

has received significant attention from the security research community in the last decade [31,

31, 32, 42, 54, 58–60, 89]. Our evaluation is guided by 6 key research questions that provide an

objective measure of the effectiveness and practicality of `SE, while also shedding light on the

general nature of unsound decisions/flaws in static analysis security tools:
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RQ1 Effectiveness of `SE. Can `SE find security problems in static analysis tools for Android, and
help resolve them to flaws/unsound choices?

RQ2 Relative effectiveness of mutation schemes.1 How effective are the individual mutation
schemes for (a) generating executable mutants and (b) discovering security flaws?

RQ3 Propagation of flaws. Are flaws inherited when a tool is reused, or built based on similar
principles?

RQ4 Addressing flaws. Are all flaws unearthed by `SE hard to address, or can some be patched?
RQ5 Scalability of `SE. Does the semi-automated methodology of `SE for analyzing mutants allow

for a feasible analysis (i.e., in terms of the manual effort)?
RQ6 Performance of `SE.What is the runtime performance of `SE?

To address RQ1→RQ6, we performed several experiments for a period of over two years (i.e.,
October 2017→ January 2020). We started by creating a data-leak security operator (i.e., as described
in Section 4.1), and used `SE’s expressive mutation schemes (Section 4.2) to seed the corresponding

mutated code in a set of 15 open source Android applications obtained from F-droid [62] (see

Table 9 in the Appendix for the list), creating 54,936 mutants representing injected data leaks.

Section 7 describes this process, along with the refinement made possibly by `SE’s EE, and addresses

questions pertaining to `SE’s intrinsic evaluation (RQ2,RQ5 andRQ6). We selected three prominent

data leak detectors, namely, FlowDroid [6], Argus [38] (previously known as AmanDroid), and

HornDroid [14], as the target of our in-depth evaluation using the end-to-end approach as described

in Section 4. The in-depth study of FlowDroid was reported in our USENIX’18 paper [11] and is

not re-performed in this study. Due to the longitudinal nature of this study, we strived to use the

latest release of the data leak detectors whenever available. Section 8 describes this evaluation,

the 13 flaws that we previously discovered (RQ1) in FlowDroid and the 12 new flaws found in

HornDroid and Argus. Further, we also briefly describe the one flaw that we could fix (RQ4), and

the relative effectiveness of `SE’s mutation schemes in unearthing flaws (RQ2). We developed

minimal examples of the discovered flaws, and performed a flaw propagation study (Section 9) to

discover the extent to which flaws discovered in one tool manifest in others developed for the

same security goal (RQ3). Particularly, we used four additional data leak detection tools, i.e., in
addition to the three tools analyzed in depth in Section 8, bringing the total to seven tools, for

which propagation was studied. Note that compared to our USENIX’18 paper [11], which only

studied the propagation of flaws discovered in FlowDroid, we describe the propagation of flaws

discovered in three tools, namely FlowDroid, Argus, and HornDroid. Our results demonstrate that

flaws generally propagate to other tools, and more so if the tools rely on common design principles.

7 EXECUTING `SE TO CREATE MUTANTS REPRESENTING DATA LEAKS
We applied `SE to 15 target Android apps obtained from F-Droid [62], and created 54,936 mutants

(i.e., data leaks).2 These leaks were generated by the `SE’s Mutation Engine (ME) using the data-leak

security operator, and the four mutation schemes described in Section 5, namely, (1) reachability,
(2) scope, (3) taint, and (4) complex reachability.
Filtering non-executable leaks: We then used our Execution Engine (EE) to filter out non-

executable leaks, as described in Section 5, and confirmed 8,250 out of 54,936 leaks as executable. The

remaining 46,686 non-executable leaks were then removed. Note that this number is independent

of the tools involved, i.e., the filtering only happens once, and the mutated APKs can then be passed

to any number of tools for analysis. By filtering out a large number of potentially non-executable

leaks (i.e. 46,686/54,936 or about 85%) , our dynamic filtering is tremendously effective at reducing

1RQ2 was not investigated in our USENIX’18 paper [11].

2
We use “mutants” and “leaks” interchangeably to refer to data-leak-relatedmutants used in the evaluation, i.e., Sections 6→9.
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Table 1. The number of leaks inserted by `SE, and the final number marked as executable by `SE’s EE.
Note that the “-” indicates that the scheme is not applicable to a particular app, due to the app’s particular
characteristics (e.g., the absence of fragments)

App ID
Inserted Leaks per Scheme Executable Leaks per Scheme

Reachability Scope Taint Complex
Reachability Reachability Scope Taint Complex

Reachability

App 01 24 48 66 22 13 (≈54%) 12 (≈12%) 8 (≈12%) 11 (≈50%)
App 02 106 - 231 83 63 (≈59%) - 80 (≈34%) 44 (≈14%)
App 03 248 - 668 191 51 (≈20%) - 162 (≈24%) 36 (≈26%)
App 04 45 192 346 41 20 (≈44%) 156 (≈81%) 51 (≈14%) 23 (≈2%)
App 05 3181 - 12104 2777 598 (≈18%) - 1362 (≈11%) 508 (≈42%)
App 06 434 - 2699 384 57 (≈13%) - 110 (≈4%) 51 (≈5%)
App 07 204 - 551 174 111 (≈54%) - 243 (≈44%) 95 (≈34%)
App 08 975 1193 5266 839 215 (≈22%) 56 (≈4%) 567 (≈10%) 168 (≈32%)
App 09 23 8 20 21 15 (≈65%) 6 (≈75%) 13 (≈65%) 12 (≈7%)
App 10 476 - 5283 449 59 (≈12%) - 681 (≈12%) 54 (≈11%)
App 11 316 1111 827 277 50 (≈15%) 287 (≈25%) 83 (≈10%) 41 (≈5%)
App 12 250 354 428 213 77 (≈30%) 111 (≈31%) 59 (≈13%) 38 (≈7%)
App 13 156 203 828 147 89 (≈57%) 112 (≈55%) 295 (≈35%) 84 (≈71%)
App 14 125 844 663 107 79 (≈63%) 55 (≈6%) 27 (≈4%) 59 (≈9%)
App 15 1304 3478 2790 1143 211 (≈16%) 456 (≈13%) 172 (≈6%) 154 (≈41%)

Total 7867 7431 32770 6868 1708 (≈22%) 1251 (≈16%) 3913 (≈11%) 1378 (≈20%)

the number of mutants used to evaluate security tools, and in turn, the manual effort required to

analyze the uncaught mutants, which demonstrates the feasibility of `SE (RQ5).

Runtime performance: `SE took 19 hours in total to create the mutants and filter out those

that were non-executable, which is a one-time cost for each security goal, i.e., which does not

have to be repeated for any of the tools we analyze in particular (RQ6). To elaborate, it took us

74 minutes on average to mutate each of the 15 apps, with minimum and maximum times of 16

and 170 minutes, and a standard deviation of about 53 minutes. The increase in runtime compared

to our original work (92 minutes in worst case) [11] is due to two reasons: (1) heterogeneity of

the applications selected for mutation, and (2) a bulk of the time spent can be attributed to our

improvements to CrashScope (see Section 5) that require the Android virtual device it uses to be

recreated more frequently, leading to an increase in runtime. However, the improvements also

increase the reliability of CrashScope’s mutant detection by preventing cross-contamination of

mutation logs across apps, and hence, are desirable.

Correlation between executable mutants and `SE’s schemes: To improve our understanding

of what factors contribute to more executable leaks, we further examined the number of executable

leaks generated as a factor of the mutation schemes used to generate them (i.e., since there was a
single security operator used) in this extended study.

Table 1 shows the number of executable and non-executable leaks seeded using each of the

mutation schemes described in Section 4.2 (RQ2). As seen in the table, the Reachability andComplex
Reachability result in the insertion of a somewhat similar number of leaks (i.e., 7,867 and 6,868

respectively), and the fraction of leaks deemed executable by our EE is similar as well, i.e., 1,708
(about 22%) and 1378 (i.e., 20%) for the Reachability and Complex Reachability scheme, respectively.

Our intuition is that this equivalence results from the inherent similarity in the nature of the two

schemes. Moreover, these two schemes produced the highest fraction of executable mutants (i.e.,
over 20%). Further, the Scope-based scheme inserted a total of 7,431 leaks, out of which, 1,251 (i.e.,
or 16%) were confirmed as executable by the EE. Note that the number of leaks inserted using the

Scope-based scheme for individual apps is highly variable, primarily due to wide variations in the

developers’ usage of scope. Finally, the Taint-based scheme was the most numerous, both in terms

of the number of leaks inserted (i.e., 32,770) as well as the number of executable leaks (i.e., 3,913) it
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caused. However, the Taint-based scheme did not lead to a high rate of executable leaks, which we

suspect to be due to the sheer number of leaks seeded with it. The high number of leaks (and more

importantly, non-executable leaks) seeded by the Taint-based scheme is primarily due to its design,

i.e., it places one source per method in a class, thus creating a total of 𝑛 sources distributed in 𝑛

methods. Then, it places 𝑛 sinks per source in each method as scope allows. As a result, around 𝑛2

number of sinks are created in total for 𝑛 sources in each class.

The superior performance of the Reachability and Complex Reachability schemes over the other

two is expected, i.e., as both Scope-based and Taint-based schemes insert leaks with sources and

sinks distributed across methods, thereby creating unreachable sinks at a higher rate. In contrast,

the Reachability and Complex Reachability schemes place leaks with the sources and sinks placed

together, resulting in a lower number of unreachable sinks, and hence, a higher rate of creating

executable mutants.

8 IN-DEPTH EVALUATION OF DATA LEAK DETECTION TOOLS WITH `SE
To demonstrate the utility of `SE, we evaluated three prominent data leak detectors with it:

FlowDroid [6], HornDroid [14], and Argus [38]. Among these, FlowDroid was analyzed in-depth

as part of the previous study [11], whereas we analyze Argus and HornDroid as part of our current,

extended study. We selected FlowDroid and Argus for the in-depth analysis as they are regularly

maintained, with multiple publicly available versions, and form a representative sample of the

current state-of-the-art. Additionally, we selected HornDroid as it is the first Android static analysis

tool with a formal proof of soundness, making it an interesting case for a soundiness evaluation.
Compatibility with our mutant apps and general analysis feasibility were also major factors that

influenced tool selection for the in-depth analysis. Specifically, we avoided tools that had not been

updated recently (i.e., were built for outdated Android versions), and hence were incompatible with

many of our mutant apps.

Methodology: Our methodology for evaluating a security tool with `SE is as follows: First, we

analyze executable mutants with the tool being evaluated. Then, we systematically examine the

surviving (i.e., undetected) mutants using the methodology described in Section 4.3, and resolve the

undetected mutants to design/implementation flaws. Using this approach, our analysis of FlowDroid,

HornDroid, and Argus led to the discovery of 25 unique flaws, among which 13 were reported in

our USENIX’18 paper [11]. We confirmed that these flaws were undocumented, i.e. mentioned neither
in the tools’ corresponding papers or documentation.

8.1 Evaluating FlowDroid
FlowDroid was introduced by Artz et al. [6] in 2014 as a data leak detection tool for Android. It

models the Android life-cycle to handle callbacks invoked by the Android Framework to perform

information flow analysis and data leak detection. Furthermore, it applies context, flow, field,

and object-sensitivity to reduce the number of false positive sensitive data leaks the tool detects.

FlowDroid has been cited over 1,400 times, and the tool has been continuously maintained since

2014, which motivated its analysis.

For our in-depth analysis, we evaluated FlowDroid v2.0, which was the version available during

our USENIX’18 study [11], using the 7,584 mutants originally created from our first seven base

apps (i.e., apps 01-07), leveraging the Reachability, Complex Reachability and Taint schemes. In

this extension, we used the substantially improved version of `SE to create 30,117 mutants (4,385

executable) from the remaining eight apps to evaluate HornDroid and Argus, using all four mutation

schemes (i.e., including the additional Scope scheme developed in this extension). This separation

is mainly due to the order in which the tools were evaluated, and the longitudinal nature of our

study. Moreover, this two-phase evaluation with disjoint sets of mutants led to the discovery of
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Table 2. Descriptions of flaws uncovered∗ in FlowDroid v2.0

ID: Flaw Name Description

FC1: Missing Callbacks

F1: DialogFragmentShow FlowDroid misses the DialogFragment.onCreateDialog() callback registered by DialogFrag-
ment.show().

F2: PhoneStateListener FlowDroid does not recognize the onDataConnectionStateChanged() callback for classes ex-

tending the PhoneStateListener abstract class from the telephony package.

F3: NavigationView FlowDroid does not recognize the onNavigationItemSelected() callback of classes implement-

ing the interface NavigationView.OnNavigationItemSelectedListener.

F4: SQLiteOpenHelper FlowDroid misses the onCreate() callback of classes extending an-
droid.database.sqlite.SQLiteOpenHelper.

F5: Fragments FlowDroid 2.0 does not model Android Fragments correctly. We added a patch, which was

promptly accepted. However, FlowDroid 2.5 and 2.5.1 remain affected. We investigate this

further in the next section.

FC2: Missing Implicit Calls

F6: RunOnUIThread FlowDroid misses the path to Runnable.run() for Runnables passed into Activ-
ity.runOnUIThread().

F7: ExecutorService FlowDroid misses the path to Runnable.run() for Runnables passed into ExecutorSer-
vice.submit().

FC3: Incorrect Modeling of Anonymous Classes

F8: ButtonOnClickToDialogOnClick FlowDroid does not recognize the onClick() callback ofDialogInterface.OnClickListenerwhen
instantiated within a Button’s onClick=“method_name” callback defined in XML. FlowDroid

will recognize this callback if the class is instantiated elsewhere, such as within an Activity’s

onCreate() method.

F9: BroadcastReceiver FlowDroid misses the onReceive() callback of a BroadcastReceiver implemented programmat-

ically and registered within another programmatically defined and registered BroadcastRe-

ceiver’s onReceive() callback.

FC4: Incorrect Modeling of Asynchronous Methods

F10: LocationListenerTaint FlowDroid misses the flow from a source in the onStatusChanged() callback to a sink in the

onLocationChanged() callback of the LocationListener interface, despite recognizing leaks

wholly contained in either.

F11: NSDManager FlowDroid misses the flow from sources in any callback of a NsdManager.DiscoveryListener
to a sink in any callback of a NsdManager.ResolveListener, when the latter is created within

one of the former’s callbacks.

F12: ListViewCallbackSequential FlowDroid misses the flow from a source to a sink within different methods of a class ob-

tained via AdapterView.getItemAtPosition() within the onItemClick() callback of an Adapter-
View.OnItemClickListener.

F13: ThreadTaint FlowDroid misses the flow to a sink within a Runnable.run()method started by a Thread, only

when that Thread is saved to a variable before Thread.start() is called.

* reported in our USENIX’18 paper [11]

flaws in all three tools, which indicates that `SE may be effective at revealing flaws in security

tools, irrespective of the apps used as input.

Results: Out of the 2,026 mutants that we analyzed using FlowDroid, 987 were undetected. On

analyzing the undetected mutants, we discovered 13 unique flaws in FlowDroid, demonstrating

that `SE can be effectively used to find problems that can be resolved to flaws (RQ1). Using the

approach from Section 4.3, we needed less than one hour to isolate a flaw from the set of undetected

mutants, in the worst case. In the best case, flaws were found in a matter of minutes, demonstrating

that the amount of manual effort required to quickly find flaws using `SE is minimal (RQ5). We

provide descriptions of the flaws discovered in FlowDroid in Table 2.
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We have reported these flaws and are working with the FlowDroid developers to resolve them.

In fact, we developed two patches [99] to correctly implement Fragment support (i.e. F5 in Table 2),

which were accepted by developers. To gain insight about the practical challenges faced by static

analysis tools, and their design flaws, we further categorize the flaws into the following classes:

FC1: Missing Callbacks: The security tool (e.g., FlowDroid) did not recognize some callback

method(s) and will not find leaks placed within them. Tools that use lists of APIs or callbacks are

susceptible to this problem, as prior work has demonstrated that the generated list of callbacks (1)
may not be complete, and (2) or may not be updated as the Android platform evolves. We observed

both such cases in our analysis of FlowDroid. That is, DialogFragments was added in API 11 before
FlowDroid was released, and NavigationView was added after. These limitations are well-known

in the community of researchers at the intersection of program analysis and Android security,

and have been documented by prior work [15]. However, `SE helps evaluate the robustness of

existing security tools against these flaws and helps in uncovering these undocumented flaws for

the wider security audience. Additionally, some of these flaws may not be resolved even after adding
the callback to the list; e.g., PhoneStateListener and SQLiteOpenHelper, both added in API 1, are

not interfaces, but abstract classes. Therefore, adding them to FlowDroid’s list of callbacks (i.e.,
AndroidCallbacks.txt) does not resolve the issue.
FC2: Missing Implicit Call: The security tool did not identify leaks within some method that

is implicitly called by another method. For instance, FlowDroid does not recognize the path to

Runnable.run()when a Runnable is passed into the ExecutorService.submit(Runnable). The response
from the developers indicated that this class of flaws was due to an unresolved design challenge in

Soot’s [101] SPARK algorithm, upon which FlowDroid depends. This limitation is also generally

well known within the program analysis community [15]. However, the documentation of this gap

in analysis, thanks to `SE, would certainly benefit researchers in the wider security community.

FC3: Incorrect Modeling of Anonymous Classes: The security tool did not detect data leaks

expressed within an anonymous class. For example, FlowDroid did not recognize leaks in the

onReceive() callback of a dynamically registered BroadcastReceiver, which is implemented within

another dynamically registered BroadcastReceiver’s onReceive() callback. It is important to note

that finding such complex flaws is only possible due to `SE’s semi-automated mechanism and may

be rather prohibitive for an entirely manual analysis.

FC4: Incorrect Modeling of Asynchronous Methods: The security tool did not recognize a

data leak whose source and sink are called within different methods that are asynchronously

executed. For instance, FlowDroid did not recognize the flow between data leaks in two callbacks

(i.e., onLocationChanged and onStatusChanged) of the LocationListener class, which the adversary

may cause to execute sequentially (i.e., as our EE confirmed).

Apart from FC1, which may be patched with limited effort, the other three categories of flaws

may require a significant amount of research effort to resolve. However, documenting them is

critical to increase awareness of real challenges faced by Android static analysis tools.

8.2 Evaluating Argus
As part of this extended study, we evaluated Argus v3.1.2 (i.e., the latest version at the time of

our analysis) with 4,385 executable mutants generated from the 8 new base apps, i.e., apps 08-15.
Further, we analyzed the 7,708 uncaught mutants (i.e., the leaks not detected by Argus) using the

methodology previously described in Section 4.3. Through the addition of 8 new base apps, we aim

to add diversity to the created mutants, as these new apps are likely to encompass a new set of

development practices that might impact our findings. Therefore, this new set of apps might also

help us find new flaws through `SE due to the additional, diverse mutations created. While we do

not consider the original apps from our USENIX’18 study for Argus and HornDroid, we consider
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Table 3. Descriptions of flaws uncovered in Argus v3.1.2.

ID: Flaw Name Description

FC4: Incorrect Modeling of Asynchronous Methods

F14: FragmentEventToExternalMethod Fragment declared within an Activity class requires its click event listening methods to be

defined in the Activity class. When we placed source in such click event listening method

and the sink in an Activity method callable by, Argus missed the leak.

F15: FragmentCrossClickEventListeners In similar construction of F14, when source and sink are distributed across click event

listener methods connected to Fragment GUI components, Argus missed the leak.

F16: OnCreateFragmentClickEventLis-

tener

Android Activity lifecycle method onCreate can be used to create a source for leak. If it

is then leaked through a method called by a fragment component click event listening

method, it is undetected by Argus.

FC1: Missing Callbacks

F17: FragmentClickEventListener When sink and source are placed in an event listener method defined in an Activity class

are coupled with components in a Fragment through relevant XML resource file, Argus

misses the leak. In similar construction to F14, if both source and sink are placed in event

listener methods for fragment components, Argus does not report it.

F18: RecyclerViewHolder A RecyclerView.ViewHolder abstract class is used to describe each item within a Recy-
clerView. This is required to be extended when used inside the extending class of Recy-
clerView.Adapter. When leak source and sink are placed within the scope of the class im-

plementing the RecyclerView.ViewHolder, Argus is unable to detect it.

F19: RecyclerViewConstructor This flaw is similar to F18, but where the leak source and sink are placed within the con-

structor of the class extending RecyclerView.ViewHolder. Argus is unable to detect the

placed leak in this scenario.

F20: RecyclerOnCreateViewHolder The class extending RecyclerView.Adapter implements the abstract method OnCreate-
ViewHolder, when ViewHolder needs to represent an item. If a leak is placed within On-
CreateViewHolder, Argus’s analysis can’t detect it.

F21: RecyclerViewOnBindViewHolder Similar to RecyclerCreateViewHolder, the class extending RecyclerView.Adapter imple-

ments the abstract method onBindViewHolder, when ViewHolder needs to display the data
at the specified position. If a leak is placed within onBindViewHolder, Argus’s analysis can-
not detect it.

F22: RecyclerViewGetItemCount getItemCount is an abstract method required to be overridden to return the total num-

ber of items bound in RecyclerView. This method is placed within a class extending Recy-
clerView.Adapter. Argus is unable to find a leak if the source and sink are placed within

getItemCount.

this to be a balanced trade-off as we later study the propagation of flaws from both old and new

sets of apps across tools.

Results: Through analyzing the uncaught mutants, we discovered 9 unique flaws in Argus, as

shown and classified in Table 3. Note that these flaws are separate from the ones found in FlowDroid

(Section 8.1). This demonstrates that the flaws found from our USENIX’18 study [11] were not

inherently coupled to the base apps chosen, and that `SE can be effective with different sets of

apps representing a reasonable level of diversity. A description of each flaw is provided in Table 3.

Our project repository provides minimal APKs representing the flaws in Argus [100].

Of the 9 flaws, 3 are based on Fragment usage and are of the FC4 flaw class, while the remaining

6 fall in FC1. Note that while we found fragment-based flaws in FlowDroid, the 4 fragment related

flaws discovered for Argus are independent, although they could be interpreted as variants of those

found in FlowDroid. The flaws discovered in Argus are described as follows:

Argus flaws in FC4: Similar to FlowDroid, Argus struggles with identifying leaks in fragments.

We observe that most of these problems are at the design-level, and occur because Argus does

not track flows between the GUI components defined in fragments. To elaborate, Argus misses

asynchronous flows between GUI components defined in the relevant XML files for fragments
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Table 4. Descriptions of flaws uncovered in HornDroid.

ID: Flaw Name Description

FC5: Android Lifecycle Callbacks

F23: OnCreateFragmentConstructor HornDroid does not detect a leak if the source is placed in the onCreate method of an

activity, and the sink is placed in the constructor of the fragment within the activity.

F24: ActivityOncreate When a leak is placed in the onCreate method of Activity, i.e. both source and sink are

placed in the method, HornDroid is unable to detect the leak.

F25: FragmentOnCreateView When the source of the leak is placed at the onCreatemethod of activity class, and the sink

at the onCreateView method of the fragment class, HornDroid does not detect the leak.

and the corresponding click-event listeners. All of our fragment-based flaws (F14-16) exploit this

design-gap in Argus to avoid detection.

Argus flaws in FC1:Of the remaining 6 flaws we discovered in Argus, 5 are based on RecyclerView
widgets. The RecyclerView is used to display a collection of data within a limited, scrolling, window.

Each RecyclerView widget implementation includes classes extending RecyclerView.ViewHolder
and RecyclerView.Adapter. Furthermore, these classes contain several abstract methods which

must be implemented, namely onCreateViewHolder, onBindViewHolder and getItemCount. Our
analysis reveals that Argus fails to detect leaks placed in any of these components and methods.

In addition, Argus does not detect flaws when leaks are placed in click event listeners statically

connected to fragment components via XML resource files. This demonstrates that further work

is required to analyze relations in between methods not only through source code, but resource

files as well. Summary of these flaws are tabulated in Table 3, and the example minimal APKs, each

exhibiting a single flaw are available in our online appendix [100].

8.3 Evaluating HornDroid
HornDroid was proposed by Calzavara et al. [14] as the first static analysis tool for Android with a

formal proof of soundness. This unique attribute motivated our choice of HornDroid for in-depth

evaluation in this extended study. HornDroid abstracts Android applications as a set of Horn clauses

to formulate security properties, which can then be processed by Satisfiability Modulo Theories

(SMT) solvers.

HornDroid’s formal proof and over-approximation require far more resources than the other

tools we evaluate, i.e., as stated in the HornDroid paper, the authors tested HornDroid on a server

with 64 multi-thread cores and 758 Gb of memory, although they reported that the most memory

utilization was around 10 GB. To match this maximum 10 GB memory utilization, we conducted our

study on a server with 32GB of RAM and 8 cores. When analyzing a mutated app with HornDroid,

we set a time-out of 36 hours, after which we would abort the analysis and report whatever mutants

were caught until that time.

Results:We were not able to analyze many of our mutated apps using HornDroid. Specifically, out

of the 31 mutated APKs (i.e., created after mutating the base APKs 08-15), HornDroid could only

analyze 4 without crashing or timing out. This was in spite of us taking care to compile the APKs

with the API level that HornDroid was built to analyze, i.e., API 19. This outcome is unfortunately

not surprising; indeed, prior work on analyzing the feasibility of Android static analysis tools has

reported similar results for research prototypes [91]. As a result, HornDroid successfully analyzed

46 executable data leaks, out of which, it caught 14, leaving 32 undetected mutants for further

analysis. We discovered 3 flaws from analyzing these undetected mutants, as shown in Table 4.

All of the 3 flaws (F23-F25) we discovered are related to the lack of appropriate support for

fragments; however, unlike prior fragment-related flaws, these flaws are generally centered around
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Table 5. Impact of Operator Placement Approaches in Finding Flaws.∗

Flaw ID Reachability Complex-Reachability Taint Scope

Flaws found from FlowDroid v2.0

F1 ✓ ✓ ✓ ✓
F2 ✓ ✓ ✓ ✓
F3 ✓ ✓ ✓ ✓
F4 ✓ ✓ ✓ ✓
F5 ✓ ✓ ✓ ✓
F6 ✓ ✓ ✓ ✓
F7 ✓ ✓ ✓ ✓
F8 ✓ ✓ ✓ ✓
F9 ✓ ✓ ✓ ✓
F10 - - ✓ ✓
F11 - - ✓ ✓
F12 - - ✓ ✓
F13 - - ✓ ✓

Flaws found from Argus v3.1.2

F14 - - ✓ ✓
F15 - - ✓ ✓
F16 - - ✓ ✓
F17 ✓ ✓ ✓ ✓
F18 ✓ - - -

F19 ✓ ✓ ✓ ✓
F20 ✓ ✓ ✓ ✓
F21 ✓ ✓ ✓ ✓
F22 ✓ ✓ ✓ ✓

Flaws found from HornDroid

F23 ✓ ✓ ✓ ✓
F24 ✓ ✓ ✓ ✓
F25 - - - ✓

∗
A “✓” indicates flaw may be resolved through relevant operator placement approach, whereas “-” indicates it may not.

the Android lifecycle methods for fragments and activities. These flaws could broadly fit in FC1;

however, they demonstrate a more fundamental, design-level lack of support for fragments, as

HornDroid fails to detect leaks in even basic lifecycle methods (e.g., Fragment onCreateView).

Hence, we create a new flaw class to represent such flaws, FC5: Android Lifecycle Callbacks, as a
special variant of FC1, described as follows:

FC5: Android Lifecycle Callbacks: This class incorporates flaws in detecting leaks in fundamen-

tal lifecycle methods, such as onCreate. To elaborate, there are only six lifecycle call back methods

in total for any Android activity [24], where onCreate is the only one considered mandatory. It

is also the first method to be called when the Activity is initialized i.e. it is the starting point of

the Activity. Hence, analyzing such callbacks is imperative for a practical analysis of data flows

within the app. However, HornDroid fails to detect leaks in three specific instances of lifecycle

callbacks for activities and fragments (F23-F25), which is concerning, as the tool strongly claims

soundness, i.e., quoted as follows: "In order to support a sound analysis of fragments, HornDroid
over-approximates their life-cycle by executing all the fragments along with the containing activity in
a flow-insensitive way".

8.4 Effectiveness of Individual Schemes in Finding Flaws
As described in Section 4.2, `SE uses four different mutation schemes to place operators in an app.

These schemes may sometimes create overlapping mutants wherein operators are placed in the

same position according to two or more schemes. As part of this extended study, we trace the flaws

we found back to the operator placement strategies described in Section 4.2.2 and 4.2.3 to determine

the usefulness of these approaches in finding flaws (RQ2).
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As shown in Table 5, of the 25 flaws, 24 could be discovered using the scope-based scheme, and

22 using the taint-based scheme. In addition, we found one flaw (i.e., F18) that could only be reached
using the reachability-based scheme. Another interesting observation is that both the Reachability
and Complex Reachability schemes are similar in terms of usefulness in finding flaws, which may

be a positive indicator of a general reachability-based approach over more complex strategies.

Based on the data in Table 5 alone, it may seem that only using the scope-based scheme is a viable

option. However, recall from Section 7 that mutation schemes may also display widely different

performance in terms of creating executable mutants. As a result, using a single scheme may

improve flaw detection, but may also generate a tremendous overhead in terms of non-executing

mutants. Furthermore, even if the same mutation/leak placement can be achieved using multiple

schemes, the common placement may help the researcher or tool developer resolve the flaw behind

an uncaught mutant faster, i.e., by helping them see the common or different factors (i.e., among

the schemes). For example, the Complex Reachability scheme makes the path between source and

sink indirect while residing within the same scope, whereas the reachability scheme places the

source and sink at the same location without establishing any indirect path. Failure to detect the

leak placed through Complex Reachability would indicate that the flaw is due to the indirect path,

rather than the location of the leak.

9 FLAW PROPAGATION STUDY
The objective of this study is to determine whether flaws from one tool propagate to other tools,

which are either implemented directly on top of the original tool, or inherit certain design attributes

(RQ3). To carry out this study, we utilized the minimal APKs created for each of our 25 flaws, and

analyzed them with other tools built with the same security goal (i.e., other data leak detectors

excluding the tools from which the specific flaws were discovered). Each minimal APK contains

only one type of flaw, i.e., we built 25 APKs, one for each flaw mentioned in Tables 2, 3 and 4.

Moreover, in order to prevent tools from crashing due to backwards compatibility issues, we built

several versions of the minimal APKs from the same code base, varying the SDK versions, as well

as the build tools (i.e., Android Studio and Gradle, vs building manually using Android SDK tools).

This was done because APK building procedure has changed over the years, and as a result, many

of the studied tools, which are well over 4-5 years old, would break for apps built using the latest

build configuration and procedure. For example, Android Studio’s Gradle based building overrides

the target SDK version defined in the AndroidManifest.xml file, and also uses newer versions of

build tools and target platforms. We discovered that decompilers such as dare [78] used in some of

the tools we analyzed do not function correctly when analyzing such builds (i.e., either crash, or
run into infinite loops). Considering these factors, we try our best to customize minimal apks for

individual tools, in order to minimize crashes or timeouts, and only report results from variants of

minimal APKs that worked., i.e., resulted in a successfully completed analysis.

9.1 Propagation of FlowDroid’s Flaws (F1-F13)
To determine if the flaws present in FlowDroid are also present in other data leak detectors, as

well as tools that inherit it, we checked if the newer release versions of FlowDroid (i.e., v2.5, v2.5.1,
v2.7.1), as well as 6 other tools (i.e., Argus, DroidSafe, IccTA, BlueSeal, HornDroid, and DidFail), are
susceptible to any of the flaws discussed in Table 2. Among these, flaw propagation across versions

of FlowDroid was done for v2.5, v2.5.1 in our original `SE study. As part of this extended study,

due to availability of FlowDroid v2.7.1, we include it.

Results: Table 6 provides an overview of the propagation of F1-F13. In the Table 6, all the versions

of FlowDroid are susceptible to the flaws discovered from our analysis of FlowDroid v2.0. Note that

while we fixed the Fragment flaw and our patch was accepted to FlowDroid’s codebase, the latest
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Table 6. Analysis of the propagation of flaws in FlowDroid 2.0 to other data leak detectors.∗

Flaw ID FD v2.0 FD v2.5 FD v2.5.1 FD v2.7.1 Argus BlueSeal DidFail DroidSafe HornDroid IccTA

F1 ✓ ✓ ✓ ✓ x x ✓ x ✓ ✓
F2 ✓ ✓ ✓ ✓ x x ✓ x ✓ ✓
F3 ✓ ✓ ✓ ✓ ✓ - ✓ - - ✓
F4 ✓ ✓ ✓ ✓ ✓ x ✓ x ✓ ✓
F5 ✓ ✓ ✓ ✓ ✓ ✓ ✓ - ✓ ✓
F6 ✓ ✓ ✓ ✓ ✓ x ✓ x ✓ ✓
F7 ✓ ✓ ✓ ✓ ✓ x ✓ x ✓ ✓
F8 ✓ ✓ ✓ ✓ x x ✓ ✓ x ✓
F9 ✓ ✓ ✓ ✓ x x ✓ x x ✓
F10 ✓ ✓ ✓ ✓ x x ✓ x x ✓
F11 ✓ ✓ ✓ ✓ ✓ x ✓ x x ✓
F12 ✓ ✓ ✓ ✓ x x ✓ x x ✓
F13 ✓ ✓ ✓ ✓ x x ✓ x x ✓

∗
Note that a “−” indicates tool crash with the minimal APK, a “✓” indicates presence of the flaw, and a “x” indicates

absence; FD* = FlowDroid.

Table 7. Analysis of the propagation of flaws in Argus 3.1.2 to other data leak detectors.∗

Flaw ID Argus FD* v2.5.1 FD* v2.6 FD* v2.6.1 FD* v2.7 FD* v2.7.1 BlueSeal DidFail DroidSafe HornDroid IccTA

F14 ✓ ✓ - ✓ - ✓ ✓ - ✓ ✓ ✓
F15 ✓ ✓ - ✓ - ✓ ✓ - ✓ ✓ ✓
F16 ✓ ✓ - ✓ - ✓ ✓ - ✓ ✓ ✓
F17 ✓ ✓ - ✓ - ✓ ✓ - ✓ ✓ ✓
F18 ✓ ✓ ✓ ✓ ✓ ✓ - - - ✓ ✓
F19 ✓ ✓ ✓ ✓ ✓ ✓ - - - ✓ ✓
F20 ✓ ✓ ✓ ✓ ✓ ✓ - - - ✓ ✓
F21 ✓ ✓ ✓ ✓ ✓ ✓ - - - ✓ ✓
F22 ✓ ✓ ✓ ✓ ✓ ✓ - - - ✓ ✓

∗
Note that a “−” indicates tool crash with the minimal APK, a “✓” indicates presence of the flaw, and a “x” indicates

absence; FD* = FlowDroid.

releases of FlowDroid (i.e., v2.5, v2.5.1, and v2.7.1) still seem to have this flaw. We have reported

this issue to the developers.

A significant observation from Table 6 is that the tools that directly inherit FlowDroid (i.e.,
IccTA, DidFail) are similarly flawed as FlowDroid. This is especially true when the tools do not

augment FlowDroid in any manner, and use it as a black box (RQ3). On the contrary, Argus, which

is motivated by FlowDroid’s design, but augments it on its own, does not inherit as many of

FlowDroid’s flaws.

BlueSeal, HornDroid, and DroidSafe use a significantly different methodology, and are also not

susceptible to many of `SE’s uncovered flaws for FlowDroid. Interestingly, BlueSeal and DroidSafe

are similar to FlowDroid in that they use Soot to construct a control flow graph and rely on it to

identify paths between sources and sinks. However, BlueSeal and DroidSafe both augment the

graph in novel ways, and thus do not exhibit most of the flaws found in FlowDroid.

Finally, it is important to note that our analysis does not imply that FlowDroid is weaker than

the tools, which have fewer flaws in Table 6. However, it does indicate that the flaws discovered

may be typical of the design choices made in FlowDroid and inherited by the tools such as IccTA

and DidFail.

9.2 Propagation of Argus’s Flaws (F14-F22)
Unique to this extended study (i.e., previously not reported in our original `SE paper [11]), we

analyzed the minimal APKs developed for F14-F22 with FlowDroid v2.5.1, v2.6, v2.6.1, v2.7, and

v2.7.1; BlueSeal, DroidSafe, DidFail, HornDroid, and IccTA to examine their prevalence. Note that
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Table 8. Analysis of the propagation of flaws in HornDroid to other data leak detectors.∗

Flaw ID Argus FD* v2.5.1 FD* v2.6 FD* v2.6.1 FD* v2.7 FD* v2.7.1 BlueSeal DidFail DroidSafe HornDroid IccTA

- Argus FD2.5.1 2.6 2.6.1 2.7 2.7.1 BlueSeal DidFail DroidSafe HornDroid IccTA

F23 x x - x - ✓ x - ✓ ✓ x

F24 x x - x - ✓ x - ✓ ✓ x

F25 x ✓ - ✓ - ✓ x - ✓ ✓ ✓

∗
Note that a “−” indicates tool crash with the minimal APK, a “✓” indicates presence of the flaw, and a “x” indicates

absence; FD* = FlowDroid.

FlowDroid 2.0 had become unavailable at this point in the study (i.e., deprecated in favor of later

versions), which is why we focus on FlowDroid versions from 2.5 to 2.7.1.

Results: As shown in the Table 7, flaws found in Argus largely affect FlowDroid, HornDroid and

IccTA. Specifically, recall that while some of the fragment and RecyclerView-based flaws were

missing callbacks that could potentially be fixed with patches, some were design-level gaps in the

data flow tracking performed by these tools. For example, in F14, an event listener reads sensitive

data (i.e., the source), and calls another method, which leaks the data (i.e., the sink). While such

event listeners may not be directly called from any of the lifecycle methods in the app, they are

likely to be invoked when user interacts with the GUI components of the app. The fact that none

of the RecyclerView-based (i.e., F18-F22) or fragment-based (i.e., F14-F17) leaks were detected by

any of the tools we evaluated demonstrates the fragility of these tools in face of commonly-used

Android GUI abstractions.

DroidSafe and BlueSeal crashed when analyzing the minimal APKs for F18-F22, while DidFail

crashed for all flaws, i.e., F14-F22. These crashes are expected, and primarily occur due to lack of

support for newer API. To elaborate, DroidSafe was specifically built to focus on Android 4.4.1 (API

19), and hence crashes on encountering RecyclerView, i.e., the set of APIs at the root of F14-F22,
which was introduced in Android 5.0 (API 21). Similarly, BlueSeal customizes an older version of

Soot for analysis, which fails when analyzing RecyclerView-based APKs. Finally, DidFail was built

using customized but outdated versions of several other tools, namely FlowDroid, Epicc [80], and

dare [78], and hence crashes on all the newer flaws. Note that while tools such as FlowDroid and

dare may be separately updated and maintained, the current implementation of DidFail customizes

these dependencies to a sufficient degree, which prevents us from simply replacing the dependency

with a newer version. However, we can still infer that since DidFail uses FlowDroid as a component,

it is likely to inherit all of FlowDroid’s flaws.

9.3 Propagation of HornDroid’s Flaws (F23-F25)
To understand whether the flaws we found in HornDroid propagate to other tools, we prepared

minimal APKs based on the found flaws of HornDroid, and analyzed them using Argus, FlowDroid

versions v2.5.1, v2.6, v2.6.1, v2.7, and v2.7.1; BlueSeal, DroidSafe, DidFail, and IccTA. None of these

flaws, nor their propagation, were reported in our original `SE paper [11].

Results: As shown in the Table 8, we find that Argus did not exhibit any of the fragment-based

flaws identified in HornDroid. This is surprising, considering that HornDroid was susceptible to

every single flaw discovered in Argus, as seen previously in Table 7. This finding may indicate that

Argus may be relatively more sound than HornDroid in practice, in spite of the latter providing a

formal proof of soundness.

Furthermore, although FlowDroid’s earlier versions (v2.5.1, v2.6.1) were able to detect leaks F23

and F24, FlowDroid version v2.7.1 was not. This is not an isolated case: recall that our patch for

another fragment flaw F5 [99] fixed it in FlowDroid v2.0, but future versions of FlowDroid (i.e.,
v2.5 onwards) still exhibit the flaw, as seen in Table 6. Interestingly, we note that F23 and F24 are

absent in IccTA, an approach that relies on FlowDroid. This is because IccTA uses an older version
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of FlowDroid as a component, which is resistant to these flaws, and hence, remains unaffected as

well. Moreover, F25, a fragment-based flaw, is exhibited by all versions of FlowDroid. This finding

is an indicator of the lack of systematic fragment support in FlowDroid, as well as other major

tools, when in fact fragments are a widely-used GUI element that may contain data leaks.

Finally, the propagation study also allows us to derive certain general conclusions regarding the

quality of the tools studied. First, we conclude that all of the tools we analyzed are incapable of

finding leaks that are exhibited in RecyclerViews. Second, we find evidence to suggest that Argus is
relatively better for detecting fragment-based leaks, relative to HornDroid and FlowDroid. This may

seem counterintuitive considering there was only one fragment related flaw (F5) in FlowDroid, two

in HornDroid (F23, F25) and four in Argus (F14-17). However, when we consider the propagation

of fragment related flaws as well, Argus is affected by five (F5, F14-17), while HornDroid and

FlowDroid (considering its latest release, v2.7.1) are both affected by seven (i.e., both are affected

by flaws F5, F14-17, and F23, F25). Thus, we argue that Argus provides more holistic support for

fragments, relative to the other tools studied.

10 DISCUSSION
`SE has demonstrated efficiency and effectiveness at revealing real undocumented flaws in promi-

nent Android security analysis tools. While experts in Android static analysis may be familiar

with some of the flaws we discovered (e.g., some flaws in FC1 and FC2), we aim to document these

flaws for the entire scientific community. Further, `SE indeed found some design gaps that were

surprising to expert developers; e.g., FlowDroid’s design does not consider callbacks in anonymous

inner classes (flaws 8-9, Table 6), and in our interaction with the developers of FlowDroid, they

acknowledged handling such classes as a non-trivial problem. During our evaluation of `SE we

were able to glean the following pertinent insights:

Insight 1: Most mutation schemes are generally effective.While certain mutation schemes may be

Android-specific, our results demonstrate limited dependence on these configurations. Out of the

25 flaws discovered using `SE (i.e., both in our USENIX’18 paper [11] as well as this extension), we

discover that each mutation scheme is necessary for detecting certain flaws (i.e., which may not be

detected with other schemes), as shown in Section 8.4.

Insight 2: Security-focused static analysis tools exhibit undocumented flaws that require further
evaluation and analysis. Our results clearly demonstrate that previously unknown security flaws

or undocumented design assumptions, which can be detected by `SE, pervade existing Android

security static analysis tools. Our findings not only motivate the dire need for systematic discovery,

fixing and documentation of unsound choices in these tools, but also clearly illustrate the power of

mutation based analysis adapted in security context.

Insight 3: Current tools inherit flaws from legacy tools. A key insight from our work is that while

inheriting code of the foundational tools (e.g., FlowDroid) is a common practice, some of the

researchers may not necessarily be aware of the unsound choices they are inheriting as well. As our

study results demonstrate, when a tool inherits another tool directly (e.g., IccTA inherits FlowDroid),

all the flaws propagate.

Insight 4: Tools which follow similar design principles but do not have a direct relationship (e.g.,
inheriting a codebase), have similar flaws. Through our experiments and evaluation performed

in this extended study, we effectively demonstrate that FlowDroid, HornDroid, and Argus; three

different static analysis tools built independently from each other, but which share similar design

principles, can and do exhibit similar flaws. This indicates that certain unsound decisions or flaws

may be tied to the common security goal or could be occurring due to fundamental gaps in the

high-level design decisions that are common across the board for such tools.
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Insight 5 : Flaws which were not present in previous versions of a static analysis tool can appear
in later versions, as the tool evolves. As we found in this extended study, certain flaws found in

HornDroid were not present in earlier versions of FlowDroid but appeared in the latest version

(Table 8). This shows that unsound choices can be made at any stage and at any iteration of software

life cycle, and further establishes the necessity of automatically and systematically evaluating these

tools. `SE lays the groundwork for the development of such a holistic, dynamic, testing framework.

Insight 6: As tools, libraries, and the Android platform evolve, security problems become harder to
track down. Due the nature of software evolution, all the analysis tools, underlying libraries, and the
Android platform itself evolve asynchronously. A few changes in the Android API may introduce

undocumented flaws in analysis tools. `SE handles this fundamental obstacle of continuous change

by ensuring that each version of an analysis tool is systematically tested, as we realize while

tracking the Fragment flaw in multiple versions of FlowDroid.

Insight 7: Benchmarks need to evolve with time. While manually-curated benchmarks (e.g., Droid-
Bench [6]) are highly useful as a “first line of defense” in checking if a tool is able to detect

well-known flaws, the downside of relying too heavily on benchmarks is that they only provide a

known, finite number of tests, leading to a false sense of security. Due to constant changes (insight

#6) benchmarks are likely to become less relevant unless they are constantly augmented, which

requires tremendous effort and coordination. `SE significantly reduces this burden on benchmark

creators via its suite of extensible and expressive security operators and mutation schemes, which

can continuously evaluate new versions of tools. The key insight we derive from our experience

building `SE is that while benchmarks may check for documented flaws, `SE’s true strength is in
discovering new flaws.

11 RELATEDWORK
`SE builds upon the theoretical underpinnings of mutation analysis from SE, and to our knowledge,

is the first work to adapt mutation analysis to evaluate the soundness claimed by security tools.

Moreover, `SE adapts mutation analysis to security, andmakes fundamental and novel modifications

(described previously in Section 4). We now describe prior work in three other related areas:

Formally Verifying Soundness: While an ideal approach, formal verification is one of the most

difficult problems in computer security. For instance, prior work on formally verifying apps often

requires the monitor to be rewritten in a new language or use verification-specific programming

constructs (e.g., verifying reference monitors [41, 102], information flows in apps [72, 73, 107]),

which poses practical concerns for tools based on numerous legacy codebases (e.g., FlowDroid [6],

CHEX [67]). Further, verification techniques generally require correctness to be specified, i.e., the
policies or invariants that the program is checked against. Concretely defining what is “correct”

is hard even for high-level program behavior (e.g., making a “correct” SSL connection) and may

be infeasible for complex static analysis tools (e.g., detecting “all incorrect SSL connections”). `SE

does not aim to substitute formal verification of static analysis tools; instead, it aims to uncover

existing limitations of such tools.

Evaluating Static Analyses: Recently, there has been significant work in the area of experi-

mentally evaluating the features and effectiveness of static analysis techniques. For instance, Qiu

et al. [87] performed a comparative evaluation of precision and runtime performance, among

FlowDroid+IccTA, AmanDroid and DroidSafe, by using a common configuration setup, using

a benchmark that extends DroidBench [28] and ICC-Bench [48]. Pauck et al. [84] propose the

ReproDroid framework that automatically evaluates the effectiveness of Android taint analysis

tools using user-labeled ground truth in Android apps. However, there are fundamental differences

in our work, and these related approaches, in terms of the primary goal, scope, and the actual

techniques leveraged.
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To elaborate, `SE focuses on exhaustively generating security test cases for evaluating Android

security tools, and systematically performing in-depth evaluations of such tools to discover gaps

in the soundness that directly affect their ability to detect security vulnerabilities such as data

leaks. `SE’s security focus is evident in our additional efforts towards designing security-focused

mutation, and attributing undetected mutants to actual flaws and design choices in tools that

affect security. On the contrary, both prior approaches focus on evaluating either the presence

of promised static analysis features, or the general precision, i.e., with a lack of specific focus on

security. Furthermore, `SE is a holistic, automated, mutation framework that generates thousands

of expressive, security-goal-focused test cases for evaluating security tools, while related work

generally relies on handcrafted benchmarks [87] or user-specified ground-truth [84], which may be

sufficient for evaluating features, but not for a thorough security evaluation of tools. That is, `SE

empowers security researchers to discover flaws without delving into the intricate details of program
analysis techniques. However, we do note that certain aspects of prior work (e.g., the automated

bootstrapping of tools in ReproDroid [84]) are complementary to `SE, and may be incorporated

into its pipeline in the future. Finally, while `SE evaluates soundness, our mutation-based approach

may be used to evaluate precision as well, which is a separate research direction that we aim to

explore in the future. The popularity and open-source nature of Android has spurred an immense

amount of research related to examining and improving the security of the underlying OS, SDK,

and apps. Recently, Acar et al. have systematized Android security research [2], and we discuss

work that introduces static analysis-based countermeasures for Android security issues according

to Acar et al.’s categorization.
Perhaps the most prevalent area of research in Android security has concerned the permissions

system that mediates access to privileged hardware and software resources. Several approaches

have motivated changes to Android’s permission model, or have proposed enhancements to it,

with goals ranging from detecting or fixing unauthorized information disclosure or leaks in third

party applications [6, 32, 42, 53, 74, 75, 106] to detecting over privilege in applications [7, 36, 104].

Similarly, prior work has also focused on benign but vulnerable Android applications, and proposed

techniques to detect or fix vulnerabilities such as cryptographic API misuse API [30, 34, 35, 97]

or unprotected application interfaces [16, 37, 57]. Moreover, these techniques have often been

deployed as modifications to Android’s permission enforcement [12, 13, 17, 26, 32, 33, 37, 40, 45, 77,

83, 85, 93, 96, 112], SDK tools [7, 36, 104], or inline reference monitors [9, 10, 18, 52, 105]. While this

paper demonstrates the evaluation of only a small subset of these tools with `SE, our experiments

demonstrate that `SE has the potential to impact nearly all of them. For instance, we can apply

`SE to vet SSL analysis tools by purposely introducing complex SSL errors in applications, or

privilege or permission misuse analysis tools, by developing security operators that attempt to

misuse permissions.

12 LIMITATIONS
1) Soundness of `SE: As acknowledged in Section 11, `SE does not aim to supplant formal

verification (which would be sound) and does not claim soundness guarantees. Rather, `SE provides

a systematic approach to semi-automatically uncover flaws in existing security tools, which is a

significant advancement over manually-curated tests.

2)Manual Effort: Presently, the workflow of `SE requires an analyst to manually analyze the result

of `SE (i.e., uncaught mutants). However, as described in Section 7, `SE possesses enhancements

that mitigate the manual effort by dynamically eliminating non-executable mutants, that would

otherwise impose a burden on the analyst examining undetected mutants. In our experience, this

analysis was completed in a reasonable time using the methodology outlined in Section 4.3.
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3) Limitations of Execution Engine: Like any dynamic analysis tool, the EE will not explore all

possible program states, thus, there may be a set of mutants marked as non-executable by the EE,

that may actually be executable under certain scenarios. However, the CrashScope tool, which `SE’s

EE is based upon, has been shown to perform comparably to other tools in terms of coverage [71].

Future versions of `SE’s EE could rely on emerging input generation tools for Android apps [69].

4) Dependency on Android Framework APIs:We designed `SE to be as generic as possible, as

discussed in Section 4.4 and Section 5. For example, the mutation seeding methodology relies on the

AST of the target source code that selects the target location for mutation. As a result, as long as the

Android framework changes through extension and target code are parse-able as AST, the seeding

methodology will not have to be changed. Indeed, the base apps we used for `SE (Table 9 in the

Appendix) rely on different versions of Android SDK with both Gradle [49] and pre-Gradle build

system, which demonstrates the versatility of `SE. On the other hand, calls to functions/methods

from the Android framework APIs are introduced through mutation. Therefore, these will have to
be changed as Android Framework changes over time, as it is not possible to generalize such calls.

5) Adaptation to Different Goals: `SE requires defining security operator through manual

examination of the claims made by existing tools i.e., the security goal of the concerned tool

(Section 4.1). Further changes might be necessary for satisfying syntactical requirements related to

the defined, new, security operator. For example, for Cipher.getInstance, the security operator

will have to be enclosed within a try-catch scope because of its throws-exception signature.

Thus, the implementation of security operators to mutate cryptographic APIs may require manual

intervention by domain experts initially, but we expect it to be a one-time effort, similar to how

we defined security operators for data leak APIs once for detecting flaws in this paper. Finally, we

note that `SE’s modular implementation separates the operators from its core components, i.e. the
Mutation Engine (ME) and the Execution Engine (EE) simply seed and execute security operators

as per the operator specification, and hence, are decoupled from the security goal per se. Hence, the

implementation of `SE framework would not have to change for different security goals, limiting

the amount of code change to only the addition of goal-specific security operators.

13 CONCLUSION
We proposed the `SE framework for performing systematic security evaluation of Android static

analysis tools to discover (undocumented) unsound assumptions, adopting the practice of mutation

testing from SE to security. `SE not only detected major flaws in popular, open-source Android

security tools, but also demonstrated how these flaws propagated to other tools that inherited the

security tool or followed similar principles. With `SE, we demonstrated how mutation analysis

can be feasibly used for gleaning unsound assumptions in existing tools, benefiting developers,

researchers, and end users, by making such tools more secure and transparent.

ACKNOWLEDGMENTS
We thank the developers of the evaluated tools for making their tools available to the community,

and for being open to suggestions. We thank Richie Bonnett for his contributions to the conference

paper version of this work. This work is supported in part by the NSF-1815336 and NSF-1815186.

REFERENCES
[1] Yousra Aafer, Nan Zhang, Zhongwen Zhang, Xiao Zhang, Kai Chen, XiaoFeng Wang, Xiaoyong Zhou, Wenliang Du,

and Michael Grace. 2015. Hare Hunting in the Wild Android: A Study on the Threat of Hanging Attribute References.

In Proceedings of the 22Nd ACM SIGSAC Conference on Computer and Communications Security (CCS ’15). ACM, New

York, NY, USA, 1248–1259. https://doi.org/10.1145/2810103.2813648

[2] Yasemin Acar, Michael Backes, Sven Bugiel, Sascha Fahl, Patrick McDaniel, and Matthew Smith. 2016. SoK: Lessons

Learned From Android Security Research For Appified Software Platforms. In 37th IEEE Symposium on Security and

ACM Trans. Priv. Sec., Vol. 1, No. 1, Article 1. Publication date: January 2020.

https://doi.org/10.1145/2810103.2813648


1:30 Amit Seal Ami, Kaushal Kafle, Kevin Moran, et al.

Privacy (SP’16).
[3] Android Developers. [n. d.]. Fragments. https://developer.android.com/guide/components/fragments.html.

[4] Dennis Appelt, Cu Duy Nguyen, Lionel C. Briand, and Nadia Alshahwan. 2014. Automated testing for SQL injection

vulnerabilities: an input mutation approach. In International Symposium on Software Testing and Analysis, ISSTA ’14,
San Jose, CA, USA - July 21 - 26, 2014. 259–269.

[5] Daniel Arp, Michael Spreitzenbarth, Malte Hübner, Hugo Gascon, and Konrad Rieck. 2014. DREBIN: Effective and

Explainable Detection of Android Malware in Your Pocket. In Proceedings of the ISOC Network and Distributed Systems
Symposium (NDSS).

[6] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bartel, Jacques Klein, Yves le Traon, Damien

Octeau, and Patrick McDaniel. 2014. FlowDroid: Precise Context, Flow, Field, Object-sensitive and Lifecycle-aware

Taint Analysis for Android Apps. In Proceedings of the ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI).

[7] Kathy Wain Yee Au, Yi Fan Zhou, Zhen Huang, and David Lie. 2012. PScout: Analyzing the Android Permission

Specification. In Proceedings of the 2012 ACM conference on Computer and communications security. 217–228.
[8] Vitalii Avdiienko, Konstantin Kuznetsov, Alessandra Gorla, Andreas Zeller, Steven Arzt, Siegfried Rasthofer, and Eric

Bodden. 2015. Mining apps for abnormal usage of sensitive data. In Proceedings of the 37th International Conference on
Software Engineering-Volume 1. 426–436.

[9] Michael Backes, Sven Bugiel, Christian Hammer, Oliver Schranz, and Philipp von Styp-Rekowsky. 2015. Boxify:

Full-fledged App Sandboxing for Stock Android. In 24th USENIX Security Symposium (USENIX Security 15).
[10] Michael Backes, Sebastian Gerling, Christian Hammer, Matteo Maffei, and Philipp von Styp-Rekowsky. 2013. App-

Guard: Enforcing User Requirements on Android Apps. In Proceedings of the International Conference on Tools and
Algorithms for the Construction and Analysis of Systems (TACAS).

[11] Richard Bonett, Kaushal Kafle, Kevin Moran, Adwait Nadkarni, and Denys Poshyvanyk. 2018. Discovering Flaws

in Security-Focused Static Analysis Tools for Android using Systematic Mutation. In 27th USENIX Security Sympo-
sium (USENIX Security 18). USENIX Association, Baltimore, MD, 1263–1280. https://www.usenix.org/conference/

usenixsecurity18/presentation/bonett

[12] Sven Bugiel, Lucas Davi, Alexandra Dmitrienko, Thomas Fischer, Ahmad-Reza Sadeghi, and Bhargava Shastry. 2012.

Toward Taming Privilege-Escalation Attacks on Android. In Proceedings of the ISOC Network and Distributed System
Security Symposium (NDSS).

[13] Sven Bugiel, Lucas Davi, Alexandra Dmitrienko, Stephan Heuser, Ahmad-Reza Sadeghi, and Bhargava Shastry. 2011.

Practical and Lightweight Domain Isolation on Android. In Proceedings of the ACM Workshop on Security and Privacy
in Mobile Devices (SPSM).

[14] S. Calzavara, I. Grishchenko, and M. Maffei. 2016. HornDroid: Practical and Sound Static Analysis of Android

Applications by SMT Solving. In 2016 IEEE European Symposium on Security and Privacy (EuroS P). 47–62.
[15] Yinzhi Cao, Yanick Fratantonio, Antonio Bianchi, Manuel Egele, Christopher Kruegel, Giovanni Vigna, and Yan Chen.

2015. EdgeMiner: Automatically Detecting Implicit Control Flow Transitions through the Android Framework. In

Proceedings of the ISOC Network and Distributed Systems Symposium (NDSS).
[16] Erika Chin, Adrienne Porter Felt, Kate Greenwood, and David Wagner. 2011. Analyzing Inter-Application Commu-

nication in Android. In Proceedings of the 9th Annual International Conference on Mobile Systems, Applications, and
Services (MobiSys).

[17] Mauro Conti, Vu Thien Nga Nguyen, and Bruno Crispo. 2010. CRePE: Context-Related Policy Enforcement for

Android. In Proceedings of the 13th Information Security Conference (ISC).
[18] Benjamin Davis, Ben Sanders, Armen Khodaverdian, and Hao Chen. 2012. I-ARM-Droid: A Rewriting Framework for

In-App Reference Monitors for Android Applications.

[19] R. A. DeMillo, R. J. Lipton, and F. G. Sayward. 1978. Hints on Test Data Selection: Help for the Practicing Programmer.

Computer 11, 4 (April 1978), 34–41.
[20] Lin Deng, N. Mirzaei, P. Ammann, and J. Offutt. 2015. Towards mutation analysis of Android apps. In Software Testing,

Verification and Validation Workshops (ICSTW), 2015 IEEE Eighth International Conference on. 1–10.
[21] Anna Derezińska and Konrad Hałas. 2014. Analysis of Mutation Operators for the Python Language. Springer

International Publishing, Cham, 155–164.

[22] Android Developers. 2019. Android Developer Documentation - Broadcasts. Retrieved July 7, 2019 from https:

//developer.android.com/guide/components/broadcasts.html

[23] Android Developers. 2019. Android Developer Documentation - Intents and Intent Filters. Retrieved July 7, 2019

from https://developer.android.com/guide/components/intents-filters.html

[24] Android Developers. 2019. Android Developer Documentation - The Activity Lifecycle. Retrieved July 7, 2019 from

https://developer.android.com/guide/components/activities/activity-lifecycle.html

ACM Trans. Priv. Sec., Vol. 1, No. 1, Article 1. Publication date: January 2020.

https://developer.android.com/guide/components/fragments.html
https://www.usenix.org/conference/usenixsecurity18/presentation/bonett
https://www.usenix.org/conference/usenixsecurity18/presentation/bonett
https://developer.android.com/guide/components/broadcasts.html
https://developer.android.com/guide/components/broadcasts.html
https://developer.android.com/guide/components/intents-filters.html
https://developer.android.com/guide/components/activities/activity-lifecycle.html


Evaluation of Android Security using Mutation 1:31

[25] Daniel Di Nardo, Fabrizio Pastore, and Lionel C. Briand. 2015. Generating Complex and Faulty Test Data through

Model-Based Mutation Analysis. In 8th IEEE International Conference on Software Testing, Verification and Validation,
ICST 2015, Graz, Austria, April 13-17, 2015. 1–10.

[26] Michael Dietz, Shashi Shekhar, Yuliy Pisetsky, Anhei Shu, and Dan S. Wallach. 2011. Quire: Lightweight Provenance

for Smart Phone Operating Systems. In Proceedings of the USENIX Security Symposium.

[27] Brendan Dolan-Gavitt, Patrick Hulin, Engin Kirda, Tim Leek, Andrea Mambretti, Wil Robertson, Frederick Ulrich, and

Ryan Whelan. 2016. Lava: Large-scale automated vulnerability addition. In Proceedings of the 37th IEEE Symposium
on Security and Privacy (S&P).

[28] DroidBench [n. d.]. DroidBench 2.0. https://github.com/secure-software-engineering/DroidBench. Last accessed on

June 27, 2020.

[29] The Economist. 2015. Planet of the phones. http://www.economist.com/news/leaders/

21645180-smartphone-ubiquitous-addictive-and-transformative-planet-phones.

[30] Manuel Egele, David Brumley, Yanick Fratantonio, and Christopher Kruegel. 2013. An Empirical Study of Cryp-

tographic Misuse in Android Applications. In Proceedings of the 2013 ACM SIGSAC Conference on Computer &
Communications Security - CCS ’13. ACM Press, Berlin, Germany, 73–84. https://doi.org/10.1145/2508859.2516693

[31] Manuel Egele, Christopher Kruegel, Engin Kirda, and Giovanni Vigna. 2011. PiOS: Detecting Privacy Leaks in iOS

Applications. In Proceedings of the ISOC Network and Distributed System Security Symposium (NDSS).
[32] William Enck, Peter Gilbert, Byung-Gon Chun, Landon P. Cox, Jaeyeon Jung, Patrick McDaniel, and Anmol N. Sheth.

2010. TaintDroid: An Information-Flow Tracking System for Realtime Privacy Monitoring on Smartphones. In

Proceedings of the 9th USENIX Symposium on Operating Systems Design and Implementation (OSDI).
[33] William Enck, Machigar Ongtang, and PatrickMcDaniel. 2009. On LightweightMobile Phone Application Certification.

In Proceedings of the 16th ACM Conference on Computer and Communications Security (CCS).
[34] Sascha Fahl, Marian Harbach, Thomas Muders, Lars Baumgärtner, Bernd Freisleben, and Matthew Smith. 2012. Why

Eve and Mallory Love Android: An Analysis of Android SSL (in)Security. In Proceedings of the 2012 ACM Conference
on Computer and Communications Security (CCS ’12). ACM, New York, NY, USA, 50–61. https://doi.org/10.1145/

2382196.2382205

[35] Sascha Fahl, Marian Harbach, Henning Perl, Markus Koetter, and Matthew Smith. 2013. Rethinking SSL Development

in an Appified World. In Proceedings of the 2013 ACM SIGSAC Conference on Computer &#38; Communications Security
(CCS ’13). ACM, New York, NY, USA, 49–60. https://doi.org/10.1145/2508859.2516655

[36] Adrienne Porter Felt, Erika Chin, Steve Hanna, Dawn Song, and DavidWagner. 2011. Android Permissions Demystified.

In Proceedings of the ACM Conference on Computer and Communications Security (CCS).
[37] Adrienne Porter Felt, Helen J. Wang, Alexander Moshchuk, Steven Hanna, and Erika Chin. 2011. Permission

Re-Delegation: Attacks and Defenses. In Proceedings of the USENIX Security Symposium.

[38] Xinming Ou Fengguo Wei, Sankardas Roy and Robby. 2014. Amandroid: A Precise and General Inter-component Data

Flow Analysis Framework for Security Vetting of Android Apps. In Proceedings of the ACM Conference on Computer
and Communications Security (CCS).

[39] The Apache Software Foundation. 2019. Apache Ant Build System. http://ant.apache.org

[40] Elli Fragkaki, Lujo Bauer, Limin Jia, and David Swasey. 2012. Modeling and Enhancing Android’s Permission System.

In Computer Security – ESORICS 2012, Sara Foresti, Moti Yung, and Fabio Martinelli (Eds.). Springer Berlin Heidelberg,

Berlin, Heidelberg, 1–18.

[41] Jason Franklin, Sagar Chaki, Anupam Datta, and Arvind Seshadri. 2010. Scalable parametric verification of secure

systems: How to verify reference monitors without worrying about data structure size. In Security and Privacy (SP),
2010 IEEE Symposium on. 365–379.

[42] Clint Gibler, Jon Crussell, Jeremy Erickson, and Hao Chen. 2012. AndroidLeaks: Automatically Detecting Potential

Privacy Leaks In Android Applications on a Large Scale. In Proceedings of the International Conference on Trust and
Trustworthy Computing (TRUST).

[43] Michael Grace, Yajin Zhou, Qiang Zhang, Shihong Zou, and Xuxian Jiang. 2012. RiskRanker: Scalable and Accurate

Zero-day Android Malware Detection. In Proceedings of the International Conference on Mobile Systems, Applications
and Services (MobiSys).

[44] R. G. Hamlet. 1977. Testing Programs with the Aid of a Compiler. IEEE Trans. Software Eng. 3, 4 (July 1977), 279–290.

[45] Stephan Heuser, Adwait Nadkarni, William Enck, and Ahmad-Reza Sadeghi. 2014. ASM: A Programmable Interface

for Extending Android Security. In Proceedings of the USENIX Security Symposium.

[46] Tsung-Hsuan Ho, Daniel Dean, Xiaohui Gu, and William Enck. 2014. PREC: Practical Root Exploit Containment

for Android Devices. In Proceedings of the Fourth ACM Conference on Data and Application Security and Privacy
(CODASPY).

[47] S. Holavanalli, D. Manuel, V. Nanjundaswamy, B. Rosenberg, F. Shen, S. Y. Ko, and L. Ziarek. 2013. Flow Permissions

for Android. In 2013 28th IEEE/ACM International Conference on Automated Software Engineering (ASE). 652–657.

ACM Trans. Priv. Sec., Vol. 1, No. 1, Article 1. Publication date: January 2020.

https://github.com/secure-software-engineering/DroidBench
http://www.economist.com/news/leaders/21645180-smartphone-ubiquitous-addictive-and-transformative-planet-phones
http://www.economist.com/news/leaders/21645180-smartphone-ubiquitous-addictive-and-transformative-planet-phones
https://doi.org/10.1145/2508859.2516693
https://doi.org/10.1145/2382196.2382205
https://doi.org/10.1145/2382196.2382205
https://doi.org/10.1145/2508859.2516655
http://ant.apache.org


1:32 Amit Seal Ami, Kaushal Kafle, Kevin Moran, et al.

https://doi.org/10.1109/ASE.2013.6693128

[48] iccbench [n. d.]. ICC-Bench. https://github.com/fgwei/ICC-Bench. Last accessed on June 27, 2020.

[49] Gradle Inc. 2019. Gradle Build System. https://gradle.org

[50] Reyhaneh Jabbarvand and Sam Malek. 2017. 𝑚𝑢Droid: An Energy-aware Mutation Testing Framework for Android.

In Proceedings of the 2017 11th Joint Meeting on Foundations of Software Engineering (ESEC/FSE 2017). ACM, New York,

NY, USA, 208–219. https://doi.org/10.1145/3106237.3106244

[51] Konrad Jamrozik, Philipp von Styp-Rekowsky, and Andreas Zeller. 2016. Mining sandboxes. In Software Engineering
(ICSE), 2016 IEEE/ACM 38th International Conference on. 37–48.

[52] Jinseong Jeon, Kristopher K. Micinski, Jeffrey A. Vaughan, Ari Fogel, Nikhilesh Reddy, Jeffrey S. Foster, and Todd

Millstein. 2012. Dr. Android and Mr. Hide: Fine-grained Permissions in Android Applications. In Proceedings of the
ACM Workshop on Security and Privacy in Mobile Devices (SPSM).

[53] Limin Jia, Jassim Aljuraidan, Elli Fragkaki, Lujo Bauer, Michael Stroucken, Kazuhide Fukushima, Shinsaku Kiyomoto,

and Yutaka Miyake. 2013. Run-Time Enforcement of Information-Flow Properties on Android (Extended Abstract). In

Proceedings of the European Symposium on Research in Computer Security (ESORICS).
[54] Jaeyeon Jung, Anmol Sheth, Ben Greenstein, David Wetherall, Gabriel Maganis, and Tadayoshi Kohno. 2008. Privacy

Oracle: A System for Finding Application Leaks with Black Box Differential Testing. In Proceedings of the 15th ACM
conference on Computer and Communications Security. ACM New York, NY, USA, 279–288.

[55] William Klieber, Lori Flynn, Amar Bhosale, Limin Jia, and Lujo Bauer. 2014. Android Taint Flow Analysis for App Sets.

In Proceedings of the 3rd ACM SIGPLAN International Workshop on the State of the Art in Java Program Analysis. 1–6.
[56] Stefan Krüger, Sarah Nadi, Michael Reif, Karim Ali, Mira Mezini, Eric Bodden, Florian Göpfert, Felix Günther, Christian

Weinert, Daniel Demmler, and Ram Kamath. 2017. CogniCrypt: Supporting Developers in Using Cryptography. In

Proceedings of the 32Nd IEEE/ACM International Conference on Automated Software Engineering (ASE 2017). IEEE Press,

Piscataway, NJ, USA, 931–936.

[57] Youn Kyu Lee, Jae young Bang, Gholamreza Safi, Arman Shahbazian, Yixue Zhao, and Nenad Medvidovic. 2017. A

SEALANT for inter-app security holes in android. In Proceedings of the 39th International Conference on Software
Engineering. 312–323.

[58] Li Li, Alexandre Bartel, Tegawendé F. Bissyandé, Jacques Klein, Yves Le Traon, Steven Arzt, Siegfried Rasthofer, Eric

Bodden, Damien Octeau, and Patrick McDaniel. 2015. IccTA: Detecting Inter-component Privacy Leaks in Android

Apps. In Proceedings of the 37th International Conference on Software Engineering - Volume 1. 280–291.
[59] L. Li, A. Bartel, J. Klein, and Y. L. Traon. 2014. Automatically Exploiting Potential Component Leaks in Android Appli-

cations. In 2014 IEEE 13th International Conference on Trust, Security and Privacy in Computing and Communications.
388–397. https://doi.org/10.1109/TrustCom.2014.50

[60] Li Li, Alexandre Bartel, Jacques Klein, Yves Le Traon, Steven Arzt, Siegfried Rasthofer, Eric Bodden, Damien Octeau,

and Patrick McDaniel. 2014. I Know What Leaked in Your Pocket: Uncovering Privacy Leaks on Android Apps with

Static Taint Analysis. In CoRR.
[61] M. Lillack, C. Kastner, and E. Bodden. 2017. Tracking Load-time Configuration Options. IEEE Transactions on Software

Engineering PP, 99 (2017), 1–1. https://doi.org/10.1109/TSE.2017.2756048

[62] F-Droid Limited. 2019. F-Droid - Free and Open Source Android App Repository. Retrieved August 10, 2019 from

https://f-droid.org/en/

[63] Mario Linares-Vásquez, Gabriele Bavota, Michele Tufano, Kevin Moran, Massimiliano Di Penta, Christopher Vendome,

Carlos Bernal-Cárdenas, and Denys Poshyvanyk. 2017. Enabling Mutation Testing for Android Apps. In Proceedings
of the 2017 11th Joint Meeting on Foundations of Software Engineering (ESEC/FSE 2017). ACM, New York, NY, USA,

233–244. https://doi.org/10.1145/3106237.3106275

[64] Martina Lindorfer, Matthias Neugschwandtner, Lukas Weichselbaum, Yanick Fratantonio, Victor Van Der Veen, and

Christian Platzer. 2014. Andrubis–1,000,000 apps later: A view on current Android malware behaviors. In Third
International Workshop on Building Analysis Datasets and Gathering Experience Returns for Security (BADGERS).

[65] Bin Liu, Bin Liu, Hongxia Jin, and Ramesh Govindan. 2015. Efficient Privilege De-Escalation for Ad Libraries in

Mobile Apps. In Proceedings of the 13th Annual International Conference on Mobile Systems, Applications, and Services
(MobiSys ’15). ACM, New York, NY, USA, 89–103. https://doi.org/10.1145/2742647.2742668

[66] Benjamin Livshits, Manu Sridharan, Yannis Smaragdakis, Ondřej Lhoták, J. Nelson Amaral, Bor-Yuh Evan Chang,

Samuel Z. Guyer, Uday P. Khedker, Anders Møller, and Dimitrios Vardoulakis. 2015. In Defense of Soundiness: A

Manifesto. Commun. ACM 58, 2 (Jan. 2015).

[67] Long Lu, Zhichun Li, Zhenyu Wu, Wenke Lee, and Guofei Jiang. 2012. CHEX: Statically Vetting Android Apps

for Component Hijacking Vulnerabilities. In Proceedings of the ACM Conference on Computer and Communications
Security (CCS). 229–240.

[68] Yu-Seung Ma, Yong Rae Kwon, and Jeff Offutt. 2002. Inter-Class Mutation Operators for Java. In 13th International
Symposium on Software Reliability Engineering (ISSRE 2002), 12-15 November 2002, Annapolis, MD, USA. 352–366.

ACM Trans. Priv. Sec., Vol. 1, No. 1, Article 1. Publication date: January 2020.

https://doi.org/10.1109/ASE.2013.6693128
https://github.com/fgwei/ICC-Bench
https://gradle.org
https://doi.org/10.1145/3106237.3106244
https://doi.org/10.1109/TrustCom.2014.50
https://doi.org/10.1109/TSE.2017.2756048
https://f-droid.org/en/
https://doi.org/10.1145/3106237.3106275
https://doi.org/10.1145/2742647.2742668


Evaluation of Android Security using Mutation 1:33

[69] Ke Mao, Mark Harman, and Yue Jia. 2016. Sapienz: Multi-objective Automated Testing for Android Applications. In

Proceedings of the 25th International Symposium on Software Testing and Analysis (ISSTA 2016). ACM, New York, NY,

USA, 94–105.

[70] K. Moran, M. Linares-Vasquez, C. Bernal-Cardenas, C. Vendome, and D. Poshyvanyk. 2017. CrashScope: A Practical

Tool for Automated Testing of Android Applications. In 2017 IEEE/ACM 39th International Conference on Software
Engineering Companion (ICSE-C). 15–18. https://doi.org/10.1109/ICSE-C.2017.16

[71] Kevin Moran, Mario Linares Vásquez, Carlos Bernal-Cárdenas, Christopher Vendome, and Denys Poshyvanyk. 2016.

Automatically Discovering, Reporting and Reproducing Android Application Crashes. In 2016 IEEE International
Conference on Software Testing, Verification and Validation, ICST 2016, Chicago, IL, USA, April 11-15, 2016. 33–44.

[72] Andrew C. Myers. 1999. JFlow: Practical Mostly-Static Information Flow Control. In Proceedings of the ACM Symposium
on Principles of Programming Langauges (POPL).

[73] AndrewC.Myers and Barbara Liskov. 2000. Protecting Privacy Using the Decentralized Label Model. ACMTransactions
on Software Engineering and Methodology 9, 4 (October 2000), 410–442.

[74] Adwait Nadkarni, Benjamin Andow, William Enck, and Somesh Jha. 2016. Practical DIFC Enforcement on Android.

In Proceedings of the 25th USENIX Security Symposium.

[75] Adwait Nadkarni and William Enck. 2013. Preventing Accidental Data Disclosure in Modern Operating Systems. In

Proceedings of the ACM Conference on Computer and Communications Security (CCS).
[76] Yuhong Nan, Min Yang, Zhemin Yang, Shunfan Zhou, Guofei Gu, and XiaoFeng Wang. 2015. UIPicker: User-Input

Privacy Identification in Mobile Applications.. In USENIX Security Symposium. 993–1008.

[77] Mohammad Nauman, Sohail Khan, and Xinwen Zhang. 2010. Apex: Extending Android Permission Model and

Enforcement with User-defined Runtime Constraints. In Proceedings of the ACM Symposium on Information, Computer
and Communications Security (ASIACCS).

[78] D. Octeau, S. Jha, and P. McDaniel. 2012. Retargeting Android Applications to Java Bytecode. In ACM SIGSOFT 20th
International Symposium on the Foundations of Software Engineering.

[79] Damien Octeau, Daniel Luchaup, Matthew Dering, Somesh Jha, and Patrick McDaniel. 2015. Composite Constant

Propagation: Application toAndroid Inter-component CommunicationAnalysis. In Proceedings of the 37th International
Conference on Software Engineering - Volume 1 (ICSE ’15). IEEE Press, Piscataway, NJ, USA, 77–88. http://dl.acm.org/

citation.cfm?id=2818754.2818767

[80] Damien Octeau, Patrick McDaniel, Somesh Jha, Alexandre Bartel, Eric Bodden, Jacques Klein, and Yves Le Traon.

2013. Effective Inter-Component Communication Mapping in Android: An Essential Step towards Holistic Security

Analysis. In Presented as Part of the 22nd USENIX Security Symposium (USENIX Security 13) (2013). USENIX, 543–558.
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/presentation/octeau

[81] A. Jefferson Offutt and Roland H. Untch. 2001. Mutation 2000: Uniting the Orthogonal. Springer US, Boston, MA,

34–44. https://doi.org/10.1007/978-1-4757-5939-6_7

[82] R. A. P. Oliveira, E. Alégroth, Z. Gao, and A. Memon. 2015. Definition and evaluation of mutation operators for

GUI-level mutation analysis. In International Conference on Software Testing, Verification, and Validation - Workshops,
ICSTW’15. 1–10.

[83] Machigar Ongtang, Stephen McLaughlin, William Enck, and Patrick McDaniel. 2009. Semantically Rich Application-

Centric Security in Android. In Proceedings of the 25th Annual Computer Security Applications Conference (ACSAC).
340–349.

[84] Felix Pauck, Eric Bodden, and Heike Wehrheim. 2018. Do Android Taint Analysis Tools Keep Their Promises?. In

Proceedings of the 2018 26th ACM Joint Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering (ESEC/FSE 2018). ACM, New York, NY, USA, 331–341. https://doi.org/10.1145/

3236024.3236029

[85] Paul Pearce, Adrienne Porter Felt, Gabriel Nunez, and David Wagner. 2012. AdDroid: Privilege Separation for

Applications and Advertisers in Android. In Proceedings of the ACM Symposium on Information, Computer and
Communications Security (ASIACCS).

[86] Upsorn Praphamontripong, Jeff Offutt, Lin Deng, and Jingjing Gu. 2016. An Experimental Evaluation of Web Mutation

Operators. In International Conference on Software Testing, Verification, and Validation, ICSTW’16. 102–111.
[87] Lina Qiu, Yingying Wang, and Julia Rubin. 2018. Analyzing the Analyzers: FlowDroid/IccTA, AmanDroid, and

DroidSafe. In Proceedings of the 27th ACM SIGSOFT International Symposium on Software Testing and Analysis - ISSTA
2018. ACM Press, Amsterdam, Netherlands, 176–186. https://doi.org/10.1145/3213846.3213873

[88] Sazzadur Rahaman, Ya Xiao, Sharmin Afrose, Fahad Shaon, Ke Tian, Miles Frantz, Murat Kantarcioglu, and Dan-

feng (Daphne) Yao. 2019. CryptoGuard: High Precision Detection of Cryptographic Vulnerabilities in Massive-Sized

Java Projects. In Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security - CCS ’19.
ACM Press, London, United Kingdom, 2455–2472. https://doi.org/10.1145/3319535.3345659

ACM Trans. Priv. Sec., Vol. 1, No. 1, Article 1. Publication date: January 2020.

https://doi.org/10.1109/ICSE-C.2017.16
http://dl.acm.org/citation.cfm?id=2818754.2818767
http://dl.acm.org/citation.cfm?id=2818754.2818767
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/presentation/octeau
https://doi.org/10.1007/978-1-4757-5939-6_7
https://doi.org/10.1145/3236024.3236029
https://doi.org/10.1145/3236024.3236029
https://doi.org/10.1145/3213846.3213873
https://doi.org/10.1145/3319535.3345659


1:34 Amit Seal Ami, Kaushal Kafle, Kevin Moran, et al.

[89] S. Rasthofer, S. Arzt, E. Lovat, and E. Bodden. 2014. DroidForce: Enforcing Complex, Data-centric, System-wide

Policies in Android. In 2014 Ninth International Conference on Availability, Reliability and Security. 40–49. https:

//doi.org/10.1109/ARES.2014.13

[90] Vaibhav Rastogi, Yan Chen, and William Enck. 2013. AppsPlayground: Automatic Large-scale Dynamic Analysis of

Android Applications. In Proceedings of the ACM Conference on Data and Application Security and Privacy (CODASPY).
[91] Bradley Reaves, Jasmine Bowers, Sigmund Albert Gorski III, Olabode Anise, Rahul Bobhate, Raymond Cho, Hiranava

Das, Sharique Hussain, Hamza Karachiwala, Nolen Scaife, Byron Wright, Kevin Butler, William Enck, and Patrick

Traynor. 2016. * droid: Assessment and Evaluation of Android Application Analysis Tools. ACM Computing Surveys
(CSUR) 49, 3 (2016), 55.

[92] Raimondas Sasnauskas and John Regehr. 2014. Intent Fuzzer: Crafting Intents of Death. In Proceedings of the 2014 Joint
International Workshop on Dynamic Analysis (WODA) and Software and System Performance Testing, Debugging, and
Analytics (PERTEA) (WODA+PERTEA 2014). ACM, New York, NY, USA, 1–5. https://doi.org/10.1145/2632168.2632169

[93] Shashi Shekhar, Michael Dietz, and Dan S. Wallach. 2012. AdSplit: Separating Smartphone Advertising from Applica-

tions. In Proceedings of the USENIX Security Symposium.

[94] Feng Shen, Namita Vishnubhotla, Chirag Todarka, Mohit Arora, Babu Dhandapani, Steven Y. Ko, and Lukasz Ziarek.

2014. Information Flows as a Permission Mechanism. In Proceedings of the IEEE/ACM International Conference on
Automated Software Engineering (ASE).

[95] Rocky Slavin, Xiaoyin Wang, Mitra Bokaei Hosseini, James Hester, Ram Krishnan, Jaspreet Bhatia, Travis D. Breaux,

and Jianwei Niu. 2016. Toward a Framework for Detecting Privacy Policy Violations in Android Application Code. In

Proceedings of the 38th International Conference on Software Engineering (ICSE ’16). ACM, New York, NY, USA, 25–36.

https://doi.org/10.1145/2884781.2884855

[96] Stephen Smalley and Robert Craig. 2013. Security Enhanced (SE) Android: Bringing Flexible MAC to Android. In

Proceedings of the ISOC Network and Distributed Systems Symposium (NDSS).
[97] David Sounthiraraj, Justin Sahs, Garret Greenwood, Zhiqiang Lin, and Latifur Khan. 2014. SMV-Hunter: Large Scale,

Automated Detection of Ssl/Tls Man-in-the-Middle Vulnerabilities in Android Apps. In In Proceedings of the 21st
Annual Network and Distributed System Security Symposium (NDSS’14.

[98] Steven Artz. [n. d.]. FlowDroid 2.0. https://github.com/secure-software-engineering/soot-infoflow/releases.

[99] stream101. [n. d.]. Possible to integrate Fragment lifecycle ? https://github.com/secure-software-engineering/

soot-infoflow-android/issues/52.

[100] `SE Developers. 2019. `SE sources and data. Retrieved July 7, 2019 from https://muse-security-evaluation.github.io

[101] Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie Hendren, Patrick Lam, and Vijay Sundaresan. 1999. Soot-a

Java bytecode optimization framework. In Proceedings of the 1999 conference of the Centre for Advanced Studies on
Collaborative research. IBM Press, 13.

[102] Amit Vasudevan, Sagar Chaki, Limin Jia, Jonathan McCune, James Newsome, and Anupam Datta. 2013. Design,

implementation and verification of an extensible and modular hypervisor framework. In Security and Privacy (SP),
2013 IEEE Symposium on. 430–444.

[103] Veracode. 2020. VERACODE’S 10TH STATE OF SOFTWARE SECURITY REPORT FINDS ORGANIZATIONS

REDUCE RISING ‘SECURITY DEBT’ VIA DEVSECOPS, SPECIAL SPRINTS. https://www.veracode.com/

veracodes-10th-state-software-security-report-finds-organizations-reduce-rising-security-debt.

[104] Timothy Vidas, Nicolas Cristin, and Lorrie Faith Cranor. 2011. Curbing Android Permission Creep. In Proceedings of
the Workshop on Web 2.0 Security and Privacy (W2SP).

[105] Rubin Xu, Hassen Saidi, and Ross Anderson. 2012. Aurasium: Practical Policy Enforcement for Android Applications.

In Proceedings of the USENIX Security Symposium.

[106] Yuanzhong Xu and Emmett Witchel. 2015. Maxoid: transparently confining mobile applications with custom views

of state. In Proceedings of the Tenth European Conference on Computer Systems. 26.
[107] Jean Yang, Kuat Yessenov, and Armando Solar-Lezama. 2012. A Language for Automatically Enforcing Privacy Policies.

In Proceedings of the 39th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages.
[108] W. Yang, X. Xiao, B. Andow, S. Li, T. Xie, and W. Enck. 2015. AppContext: Differentiating Malicious and Benign

Mobile App Behaviors Using Context. In 2015 IEEE/ACM 37th IEEE International Conference on Software Engineering,
Vol. 1. 303–313. https://doi.org/10.1109/ICSE.2015.50

[109] Chixiang Zhou and Phyllis G. Frankl. 2009. Mutation Testing for Java Database Applications. In Second International
Conference on Software Testing Verification and Validation, ICST 2009, Denver, Colorado, USA, April 1-4, 2009. 396–405.

[110] Yajin Zhou and Xuxian Jiang. 2012. Dissecting Android Malware: Characterization and Evolution. In Proceedings of
the IEEE Symposium on Security and Privacy (Oakland).

[111] Yajin Zhou, Zhi Wang, Wu Zhou, and Xuxian Jiang. 2012. Hey, You, Get off of My Market: Detecting Malicious

Apps in Official and Alternative Android Markets. In Proceedings of the ISOC Network and Distributed System Security
Symposium (NDSS).

ACM Trans. Priv. Sec., Vol. 1, No. 1, Article 1. Publication date: January 2020.

https://doi.org/10.1109/ARES.2014.13
https://doi.org/10.1109/ARES.2014.13
https://doi.org/10.1145/2632168.2632169
https://doi.org/10.1145/2884781.2884855
https://github.com/secure-software-engineering/soot-infoflow/releases
https://github.com/secure-software-engineering/soot-infoflow-android/issues/52
https://github.com/secure-software-engineering/soot-infoflow-android/issues/52
https://muse-security-evaluation.github.io
https://www.veracode.com/veracodes-10th-state-software-security-report-finds-organizations-reduce-rising-security-debt
https://www.veracode.com/veracodes-10th-state-software-security-report-finds-organizations-reduce-rising-security-debt
https://doi.org/10.1109/ICSE.2015.50


Evaluation of Android Security using Mutation 1:35

[112] Yajin Zhou, Xinwen Zhang, Xuxian Jiang, and Vincent W. Freeh. 2011. Taming Information-Stealing Smartphone

Applications (on Android). In Proceedings of the International Conference on Trust and Trustworthy Computing (TRUST).

APPENDIX

1 BroadcastReceiver receiver = new BroadcastReceiver () {
2 @Override
3 public void onReceive(Context context , Intent intent) {
4 BroadcastReceiver receiver = new BroadcastReceiver (){
5 @Override
6 public void onReceive(Context context , Intent intent) {
7 String dataLeak = Calendar.getInstance ().getTimeZone ().getDisplayName ();
8 Log.d("leak -1", dataLeak);}};
9 registerReceiver(receiver , new

IntentFilter ().addAction("android.intent.action.SEND"));
10 }};
11 registerReceiver(receiver , new IntentFilter ().addAction("android.intent.action.SEND"));

Listing 5. A dynamically-created BroadcastReceiver, created inside another, with data leak. Whenever the
onReceive() callback of the receiver object is invoked, it will create another receiver object of similar type, with
a leak inside its own onReceive() callback. This can be further evolved to use anonymous object declaration
that can leak information in a similar nature.

CrashScope (Execution Engine): The EE functions builds upon CrashScope [70, 71], which

statically analyzes the code of a target app to identify activities implementing potential contextual

features (e.g. rotation, sensor usage) via API call-chain propagation. This execution is guided by

one of several exploration strategies, organized along three dimensions: (i) GUI-exploration, (ii)

text-entry, and (iii) contextual features.

Note that because the goal of the EE is to explore as many screens of a target app as possible, the

EE forgoes certain combinations of exploration strategies from CrashScope [70, 71] (e.g. entering
unexpected text or disabling contextual features) prone to eliciting crashes from apps. The approach

uses adb and Android’s uiautomator framework to interact with and extract GUI-related informa-

tion from a target device or emulator. Further implementation details of exploration strategies can

be found in [70, 71].

Table 9. List of App names, URLs and IDs assigned by us for the purpose of the `SE study

App ID Andorid App name URL

app 01 2048 https://f-droid.org/en/packages/com.uberspot.a2048/

app 02 Protect Baby Monitor https://f-droid.org/en/packages/protect.babymonitor/

app 03 QR Scanner https://f-droid.org/en/packages/com.secuso.privacyFriendlyCodeScanner/

app 04 Location Share https://f-droid.org/en/packages/ca.cmetcalfe.locationshare/

app 05 Camera Roll https://f-droid.org/en/packages/us.koller.cameraroll/

app 06 AndroidPN Client https://f-droid.org/en/packages/org.androidpn.client/

app 07 Activity Launcher https://f-droid.org/en/packages/de.szalkowski.activitylauncher/

app 08 Man Man https://f-droid.org/en/packages/com.adonai.manman/

app 09 BMI Calculator https://f-droid.org/en/packages/com.zola.bmi/

app 10 A Time Tracker https://f-droid.org/en/packages/com.markuspage.android.atimetracker/

app 11 AFH Downloader https://f-droid.org/en/packages/org.afhdownloader/

app 12 Android Explorer https://f-droid.org/en/packages/com.iamtrk.androidexplorer/

app 13 Kaltura Device Info https://f-droid.org/en/packages/com.oF2pks.kalturadeviceinfos/

app 14 Apod Classic https://f-droid.org/en/packages/com.jvillalba.apod.classic/

app 15 Calendar Trigger https://f-droid.org/en/packages/uk.co.yahoo.p1rpp.calendartrigger/

Apps used in the study: For our study, we collected a set of 15 open-source apps from F-Droid [62],

as shown in Table 9. The apps come from different heterogeneous build configuration settings, with

compile SDK API level 23 (Marshmallow) to 27 (Oreo), minimum SDK API level 9 (Gingerbread) to

16 (Jelly Bean), and target SDK API level from 17 (Jelly Bean) to 26 (Oreo), with sizes ranging from

several hundred KB to a maximum of 3.5 MB.
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https://f-droid.org/en/packages/com.uberspot.a2048/
https://f-droid.org/en/packages/protect.babymonitor/
https://f-droid.org/en/packages/com.secuso.privacyFriendlyCodeScanner/
https://f-droid.org/en/packages/ca.cmetcalfe.locationshare/ 
https://f-droid.org/en/packages/us.koller.cameraroll/ 
https://f-droid.org/en/packages/org.androidpn.client/ 
https://f-droid.org/en/packages/de.szalkowski.activitylauncher/
https://f-droid.org/en/packages/com.adonai.manman/
https://f-droid.org/en/packages/com.zola.bmi/
https://f-droid.org/en/packages/com.markuspage.android.atimetracker/
https://f-droid.org/en/packages/org.afhdownloader/
https://f-droid.org/en/packages/com.iamtrk.androidexplorer/
https://f-droid.org/en/packages/com.oF2pks.kalturadeviceinfos/
https://f-droid.org/en/packages/com.jvillalba.apod.classic/
https://f-droid.org/en/packages/uk.co.yahoo.p1rpp.calendartrigger/
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